Exploring Together

We are closer than ever before to sending American astronauts to Mars than anyone, anywhere, at any time has ever been. A new consensus is emerging around NASA’s plan and timetable for sending astronauts to the Red Planet in the 2030s. This consensus extends not only across the aisle in Washington, but across the world to the various corners of science, policy, academia, industry, non-profits, citizen scientists, students, and everyday dreamers who envision a future where there is a continuous human presence on Mars and where our own quality of life here on Earth is better because of the technologies that we develop to get there.

I find that less often are folks asking, “Why aren’t you doing things my way?” or “Is Mars the right destination?” Rather, they’re asking questions like, “How can we be a part of this?” and “What are some areas where we can work together?”

Mars exploration promises to answer enduring questions like: “Is it habitable and did life ever exist on Mars?”

One of the things I often find as I meet with stakeholders from across sectors and around the world is that our partners are looking to NASA (and to a larger extent the people of the United States) for leadership – and we’re happy to provide it!

In the international space community, gone are the days of the “space race” when the dominant theme was that of various nations racing against each other. Instead, we’re increasingly running together. Time and again I hear talk from our friends across the globe of how NASA’s Journey to Mars truly benefits all humankind.

At NASA, we have roughly 700 active agreements with more than 120 international partners. Tens of thousands of people from across 15 countries have been involved in the operations and construction of the International Space Station alone, and the Station has hosted more than 2,000 research investigations from researchers in more than 95 countries.

Here at home, we work with business partners to transfer 1,600 new technologies a year into the market for job creation and economic growth, and we’re constantly looking for partners both in and out of government who are interested in developing the technologies that drive exploration while also creating jobs and improving our quality of life on Earth.

One of many examples is the Bigelow Expandable Activity Module, or BEAM, which launched earlier this month aboard a SpaceX cargo resupply mission to the space station for a two-year technology demonstration – one of two recent, successful resupply missions (the other being Orbital-ATK’s Cygnus launch in March). The BEAM demonstration is part of a public-private partnership contract with Bigelow Aerospace to study the radiation protection, thermal performance and general operations of expandable structures in space. President Obama’s budget proposal for the 2017 fiscal year provides $90 million for NASA to study approaches to creating the habitation systems astronauts will need for the journey to Mars, leveraging capabilities developed for the space station and using public-private partnerships.

With the award of our second space station Cargo Resupply Services (CRS-2) contracts, we added Sierra Nevada Corporation, bringing to three the number of American commercial cargo service providers, along with SpaceX and Orbital ATK. We’re also hard at work with our commercial crew partners Boeing and SpaceX to return human space launches to American soil on commercial carriers, allowing NASA to explore farther, with an expanded focus on deep-space exploration – the proving ground for the human missions to the Red Planet that follow as part of our Journey to Mars plan. Our Commercial Crew Program will increase the space station astronauts from six to seven, effectively doubling the amount of crew time dedicated to research on the orbiting laboratory.

We also have Space Act Agreements with dozens of American commercial, government, and non-profit partners – from Google’s work on embedded smartphones to Arizona State University’s work on thermography for prognostics of composite materials, the State of Hawaii’s work on STEM initiatives … the list goes on and on.

Among the many exciting things we’re doing with American businesses, we’re particularly excited about an upcoming SpaceX project that would build upon a current “no-exchange-of-funds” agreement we have with the company. In exchange for Martian entry, descent, and landing data from SpaceX, NASA will offer technical support for the firm’s plan to attempt to land an uncrewed Dragon 2 spacecraft on Mars.

As the saying goes, “spaceflight is hard.” Sending astronauts to Mars, which will be one of the greatest feats of human innovation in the history of civilization, carries with it many, many puzzles to piece together. That’s why we at NASA have made it a priority to reach out to partners in boardrooms, classrooms, laboratories, space agencies and even garages across our country and around the world.

We have more than half a century of experience and success exploring Mars to build upon, dating back to Mariner 4’s flyby in July 1965. Today, we continue to learn more about the Red Planet from NASA’s current robotic missions: the Mars Reconnaissance Orbiter, the Mars Exploration Rovers (Spirit and Opportunity), Mars Express, Mars Odyssey, Mars Science Laboratory (Curiosity), and Mars Atmosphere and Volatile EvolutioN (MAVEN). We also work with the Indian Space Research Organisation, providing our deep space network for their Mars Orbiter Mission (MOM), as well as the European Space Agency and Roscosmos supporting their ExoMars scientific spacecraft currently enroute to Mars. We firmly believe that humanity is empowered when we collaborate in the peaceful exploration of space.

When he laid out his plans for NASA and the Journey to Mars in 2010, President Obama spoke of how partnership with industry could have the potential to “accelerate the pace of innovations as companies — from young startups to established leaders — compete to design and build and launch new means of carrying people and materials out of our atmosphere.”

This is exactly what’s happening and it’s one of the reasons that we’re closer to sending humans to Mars than ever before.