First Stage Segments Are on the Move

 

The first stage segments are just about ready to go. They have a long trip ahead of them from first stage contractor ATK’s facilities in Promontory, Utah to the launch site at Kennedy Space Center in Florida.

Last week, using specialty transporters, ATK moved the Center Aft Segment to a holding facility where it will be housed in preparation for the cross-country trek via railcar. Some one described these transporters as looking like something out of the Transformers movie and I don’t think that’s too far off. They are impressive looking vehicles.

That big black line you see running diagonally down the side is called a Z-stripe. The Z-stripe is a 24-inch wide stripe painted on the first stage motor segments that wraps from the top of the motor to the bottom.  The main purpose of the Z-stripe is to provide a way for the I-X team to determine the roll attitude and rate from footage recorded by cameras on the ground. That footage serves as a backup to on-board data gathered during the flight.  The Z-stripe will also provide confirmation that the rocket rolled 90° shortly after lift-off from the pad like it is supposed to. Measurement from watching the Z-stripe could be very helpful in the case that the flight goes differently than expected.

We’re expecting to ship the motor segments next month. They are the last few pieces of hardware to ship, so once they make it down to KSC, we’ll be ready to start putting the rocket together.

Final Newly Manufactured Segment Arrives at KSC for Ares I-X Launch

The Ares I-X team was very excited on Friday when the frustum rolled into the Assembly Refurbishment Facility at Kennedy Space Center, making it the final newly manufactured segment to arrive for this summer’s Ares I-X launch.

The frustum is the segment between the Forward Skirt Extension and the upper stage of the Ares IX launch vehicle.  As you can see, it looks a lot like a giant funnel. Its main function is to transition the flight loads from the thicker upper stage to the thinner first stage. It weighs in at approximately 13,000 pounds, and is 10 feet long. It’s composed of two machined, aluminum-forged rings that are attached to a conic section. The large diameter of the cone is 18 feet, while the small diameter is 12 feet. The thickness of the cone is only 1 ¼ inches! Kind of amazing.

Now that the frustum is at Kennedy, technicians will begin the final processing and it will be integrated to the forward skirt and forward skirt extension to make the forward assembly. The completed forward assembly will be moved over to the Vehicle Assembly Building for stacking operations scheduled to begin in April.

With the arrival of the frustum, the team now waits for the final rocket components to arrive — the motors. The rocket motors, manufactured by ATK in Utah and shipped via rail to Kennedy, are scheduled to arrive next month. 

Tuna Cans at Kennedy?

Take a look at this photo:

That’s definitely hardware, but it’s not a space shuttle! It is an Ares vehicle being stacked in the Vehicle Assembly Building at Kennedy Space Center.  The Constellation Program is on the move towards the Ares I-X launch and things are moving along pretty well. More and more flight hardware is pouring into KSC and the Ares I-X team is now starting to put the rocket together.

In the center of the photo, the ballast is being lowered into one of the upper stage simulator segments. The ballasts mimic the weight of the solid rocket fuel that will be needed to launch the Ares I — a total of weight of about 160,000 pounds. It’s important that Ares I-X carry these ballasts so it can to gather important data that will help engineers build the Ares I. The upper stage simulator segments are nicknamed the “tuna cans” because they look like…well tuna cans. They simulate what will be the upper stage rocket on the Ares I.

For more photos in the VAB, try out this link:

http://mediaarchive.ksc.nasa.gov/search.cfm?cat=166

 

Beating Swords Into Plowshares: The Ares I-X Roll Control System

The Ares I-X flight test vehicle is being built from a lot of off-the-shelf components, such as the solid rocket booster first stage, which is coming directly from the space shuttle inventory, or the avionics, which are from the Atlas V Evolved Expendable Launch Vehicle. However, one of the lesser-known off-the-shelf parts for Ares I-X is the Roll Control System, or RoCS.

The RoCS four thrusters fire alongside the rocket in short pulses to control the vehicle’s roll. After clearing the launch tower, the Ares I-X rocket will be rolled 90 degrees to the same orientation that the Ares I rocket will use. Once that maneuver is completed, the RoCS keeps Ares I-X from rolling during flight like a corkscrew or a football spiraling downfield. This required a rocket engine that could be turned on and off like a thermostat — only when needed to maintain position within a certain range.

There were actually a couple of choices: one was to use reaction control thrusters from the space shuttle. However, Ares I-X would have needed four thrusters per RoCS module — eight in all for the mission. However, with the Shuttle production lines shut down and Ares I-X being an expendable rocket, the Shuttle program couldn’t afford to part with any of their thrusters. Another option — the one eventually chosen — was the upper stage engine of the Peacekeeper missile system, which was in the process of being demilitarized and dismantled as part of the second Strategic Arms Reduction Treaty (START II).

The Peacekeeper’s axial engine (or AXE) met several of the Ares I-X requirements, including the fact that it was a reliable, off-the-shelf system; it was able to handle the on/off pulsing cycle needed for the flight; its thrust was such that only two engines would be required per module; and it was relatively low-cost and available for use. (The Air Force agreed to transfer the axial engines NASA needed as well as the engines’ propellant and pressurization tanks, “for just the cost of shipping,” as RoCS team leader Ron Unger put it.).   

What a fantastic use of these components: instead of being used for their original mission as part of a nuclear weapon, they are contributing to the first step in America’s next generation of space exploration!

NASA Langley Ares I-X Rocket Elements Arrive at NASA Kennedy Space Center


It takes a mighty big airplane to transport a 43-foot-long piece of hardware, not to mention a 16 foot wide, 7 foot tall simulation of the crew module that will take our astronauts to the moon.


The Ares I-X launch abort system (LAS) simulator rolled off an Air Force C-5 transport Jan. 28 after landing on the NASA Kennedy Space Shuttle runway.  The LAS simulator, which represents the tip of the Ares I-X rocket, was designed and built at NASA Langley Research Center. 

The Ares I-X crew module, in blue, and supporting hardware were unloaded after the two-hour flight from Langley to Kennedy.

The crew module and launch abort system simulators, wrapped in blue, took their place among other Ares I-X hardware in the Vehicle Assembly Building at NASA Kennedy.