Monthly Archives: May 2009

Ares I-X Puzzle Pieces Coming Together

Posted on by .


Work continues as we put together the pieces of hardware for the Ares I-X flight test scheduled for later this year. Two of the newly designed and manufactured segments, called the forward skirt and the forward skirt extension, were joined together earlier this month in the Assembly Refurbishment Facility at Kennedy Space Center. They are two of sixteen pieces that have been put together so far.  When we put all 26 pieces together, we’ll say we’ve got a rocket. So, in a way, I guess you could say we’re more than half way there.

The 16,000-pound forward skirt extension is a proof-of-concept, or demonstration of this prototype, that incorporates 18 months of design work and eight months of manufacturing. It’s made of an aircraft-grade aluminum structure and houses three newly designed parachutes that will bring the first stage of the Ares I-X to a safe splashdown about 150 miles out in the Atlantic Ocean, east of Cape Canaveral.

The 14,000-pound forward skirt is constructed entirely of the same kind of armored steel used on Abrams A-1 tanks and armored Humvees. It is designed to simulate the stage that will contain the Ares I first stage electronics and provide access to the top of the motor.  It also contains two video cameras that will capture the main parachutes deployment. Once attached, this assembly will be joined to the frustum, another new segment made especially for Ares I-X, and then be moved to the Vehicle Assembly Building for stacking.

Successful First Stage Frustum Separation Test

Posted on by .


Earlier this month the Ares I-X team conducted a successful frustum separation test. The success of the test showed that the separation charge is fully capable of splitting the joint of the frustum’s aft ring — an important hurdle to clear. 

View frustrum test (Windows streaming)

The test simulated the first separation event that will happen about 2 minutes after launch when the propellant in the first stage booster is used up. After the booster burns through all the propellant, the first stage (bottom half of the rocket) splits from the upper stage simulator and crew module/launch abort system simulator (upper part of the rocket). This split happens at a piece of the rocket called the frustum.

The frustum is an upside-down cone-shaped piece that connects the skinnier first stage to the thicker upper stage. The large forward (top) section of the frustum, which connects with the upper stage, is eighteen feet in diameter while the aft (bottom) end is twelve feet in diameter to attach to the booster. During separation, linear shaped charges detonate at the frustum’s aft ring, allowing the first stage to return to Earth where it will be retrieved and refurbished for other Ares missions.

Another view of the test (Windows streaming)

The shock created by the charge was measured by accelerometers and acoustic pressure sensors. Measuring the shock is an important part of the test because if the bang is “too big for the buck,” it could damage some of the avionics or other pieces of hardware. It’s a balancing act between having a bang that is strong enough to separate the metal but not so strong as to damage the working parts of the rocket.

The test took place at ATK’s Promontory facility in Utah. The data from the test will be used to prepare for the Ares I-X flight and will help Ares I engineers make sure the calculations they are currently using are correct.

Checking Out Hardware at the VAB

Posted on by .

The launch of STS-125 was absolutely beautiful! That’s one of the best things about working in the space business — getting to watch the shuttle launch. If you haven’t ever had the chance to see a shuttle launch in person you might be interested to know that there is a whole lot going on at KSC leading up to the launch. For the few days before launch all of KSC is bustling with people from all over the world who have come to see or help out with the launch.

This time, two days before launch, the Ares I-X team took an overflowing busload of media to the Vehicle Assembly Building for an Ares I-X media opportunity. As we walked into the building, the media were in awe at how big the rocket is going to be. Until you see it in person, it is hard to get a reference for how big 327 feet can be.

We proceeded down to High Bay 4 to meet up with Bob Ess, mission manager, and Steve Davis, his deputy. We split up into groups and toured the bay from the floor as well as from the fifth level. The media had many questions and were excited to see how much progress we have made in processing the upper stage.

Videos, pictures and pens were going a mile a minute trying to capture every little detail. It was hard to get the media to leave the VAB and get back on the bus! If we let them, they would have stayed all day. Not to worry, we’ll be back in a month or less.

The CM-LAS and the Birdcage

Posted on by .

Ares I-X hardware has the best nicknames.

These images show the Stack-5 Ground Support Equipment Lifting Fixture or as it is known to the I-X team, the “birdcage” being lowered over the Crew Module/Launch Abort System (CM/LAS) for a fit check. The birdcage is a metal framework that was collaboratively built and designed at the Langley Research Center in Langley, Virginia and Kennedy Space Center in Florida. It fits over the CM/LAS in order for it to be moved and stacked creating super stack 5.

The “birdcage” is bolted to the bottom of the crew module portion of the CM/LAS and then lifted into place (by one of the 325 ton overhead cranes in the VAB) and placed on top of the service module, which is already stacked on top of the Ares I-X rocket.  Technicians can then remove the bolts — from inside the CM — and the “birdcage” is removed.

Getting Locked and Loaded and Ready to Roll

Posted on by .

The second of the two roll control system modules for Ares I-X was installed into the rocket’s interstage this week in the Vehicle Assembly Building at Kennedy Space Center.

These photos were taken in the Vehicle Assembly Building from the fifth floor crossover looking down into the bay.


 

The roll control system modules were loaded with their propellants at the Hypergol Maintenance Facility before being moved over to the Vehicle Assembly Building. The propellants (nitrogen tetroxide and mono¬methyl hydrazine) are hypergolic chemicals, which means they spontaneously ignite when they come into contact with one another.

The roll control system is designed to perform a 90-degree roll after the rocket clears the launch tower. It will also prevent the rocket from spiraling like a football during flight and maintaining the orientation of the rocket until separation of the upper and first stages.