Same Choices,Same Story Here

There’ve been a lot of stories in the press lately about Constellation and its progress or supposed lack thereof. The alleged danger that the program is in. Could it be that when there’s nothing real to report that people try to stir up old news?


The fact is that Constellation is targeting March 2015 for the first crewed flight to the International Space Station, with Orion aboard the Ares I rocket. That date hasn’t changed for some time. We did originally give our teams a very tough challenge in the early days of the program of making this milestone in September 2013. And they worked hard toward it. But the fact is, we needed more money early on. Given the way budget cycles work, we were given a budget to initial operational capability, but the critical mass we would have needed to make that earlier date just wasn’t there right away.


So we made choices. We continue to make choices. About what to do and when. About sequencing and doing things in parallel that we might ideally do in a different fashion given every dollar we wanted when we wanted it. But who gets that? The reality is that we are very fortunate to have a budget that will enable us to get to a crewed flight in 2015, but we’re going to have to put off some other work until we get the Ares I and Orion system fully designed, tested and flown.


Our budgets are built to accommodate the change and contingency that any development program encounters. We have, after all, not created a new system for spaceflight in over 35 years. It’s an enormous challenge and one that we welcome. There have been varying budget numbers reported in the press. The bottom line is that we had some numbers early on that we used as estimates while the overall architecture we were going to use was still under discussion. Right now we’re targeting $36 billion for Constellation’s cost through initial operational capability. That’s for hardware, the stuff that will actually get us into space.  But we also need to budget for the people and ground operations, the upcoming work that must begin on Ares V and early development work on lunar systems. When you add that in, you get to around $44 billion for Constellation through 2015.


But those budgets are still being worked out with the new Administration. In the meantime, America should be proud of the exceptional work by teams across the country for the next generation of space vehicles. We’re working hard on them every single day.


The New Constellation Video

Take a look at the new Constellation video, which gives an overview of the progress that has been made. You can view it either on the Constellation multimedia page on or on the NASA Television YouTube page.


NASA Television on YouTube:



NASA and Orion Industry Team Conduct Ground Test Firing


Tuesday NASA and the Orion Industry Team successfully test fired a sub-scale attitude control motor thruster for the launch abort system (LAS) of NASA’s Orion crew exploration vehicle.


Conducted at ATK’s facility in Elkton, Md., the ground test firing is a milestone in the development of the Orion spacecraft and brings the Constellation Program another step closer to flight-ready status.

The test, referred to as High Thrust-8 (HT-8), was the fifth in a series of ground demonstrations of Orion’s attitude control motor system. This ground firing validated that several flight-weight subsystems are performing as designed. The final tests will be of increasing complexity in preparation for the Pad Abort 1 flight test scheduled for later this year, which will test the launch abort system’s capabilities using a full-scale crew module mockup.

Orion’s attitude control motor will provide steering for the launch abort system. In combination with the abort motor under development by ATK, the attitude control motor is designed to safely lift and steer the Orion crew module away from the launch vehicle, pulling the crew to safety in an emergency on the launch pad or during the initial ascent phase.  


The attitude control motor consists of a solid propellant gas generator, with eight proportional valves/nozzles equally spaced around the circumference of the three-foot diameter motor.  In combination, the valves can exert up to 7,000 pounds of steering force to the vehicle in any direction upon command from the crew module.  The valves are controlled by a redundant power and control system.  This test demonstrated one of the flight-weight valves at full thrust and at maximum stressing load.

ATK is responsible for the attitude control motor through a contract to Orbital Sciences Corporation, who is responsible for delivering the LAS motors for Lockheed Martin, NASA’S prime contractor for Orion. The Orion Project is managed out of NASA’s Johnson Space Center. The launch abort system is managed out of NASA’s Langley Research Center in partnership with NASA’s Marshall Spaceflight Center.  


Image Credit: ATK

Space Shuttle Program Hands over Launch Platform to Constellation

The handover of Mobile Launcher Platform-1 from NASA’s Space Shuttle Program to the Constellation Program at a Kennedy Space Center ceremony on March 25 is the next step in returning people to the moon and exploring beyond.

The 4,625-ton, two-story steel structure will be modified for the first test flight of NASA’s next-generation spacecraft and launch vehicle system. The Ares I-X rocket test, which is targeted for launch this summer, will provide important data for developing Ares I and support a critical design review next year.

“It truly is a historic day to be turning over a major piece of hardware from one manned spaceflight program to another,” Shuttle Launch Director Mike Leinbach said. “It really doesn’t happen very often.”

MLP-1 holds special memories for Leinbach, considering it has taken part in 51 shuttle launches — more than NASA’s other two launch platforms. Its rich history also includes three Apollo launches, including Apollo 11 that put humans on the moon; and three Skylab missions, making it the first mobile launcher platform to support space station, Apollo, space shuttle and Constellation programs.

The launch platform had just been used on March 15 to launch space shuttle Discovery on its STS-119 mission to the International Space Station.

After Leinbach shared some history of the launcher, the banner that read “Go Discovery” was changed to “Go Ares I-X” to reflect its new mission with the Constellation Program.

 “We are excited to have this mobile launcher platform turned over to us,” said Pepper Phillips, director of the Constellation Project office. “This is a real enabler for us.”

Constructed in 1964, Mobile Launcher-1, or ML-1, originally was used for transporting and launching the Saturn V rocket for Apollo lunar landing missions. For Skylab and Apollo-Soyuz, ML-1 was modified with a “milkstool” pedestal that allowed the shorter Saturn IB rocket to use the Saturn V tower and service arms. ML-1 was modified in 1975 for use in shuttle operations and was renamed Mobile Launcher Platform-1, or MLP-1.

  In support of the transition, United Space Alliance, Lockheed Martin and NASA collaborated to simplify design plans and capitalize on previous shuttle upgrades and existing infrastructure. 

The first modifications for MLP-1 began in May 2008, with the installation of 20 water bag cleats to the platform’s right-hand solid rocket booster hole, which will prevent any possible acoustic damage to the rocket during liftoff.

In December 2008, the ground control system hardware, which controls the ground equipment for checkout and launch, was installed onto MLP-1.

Next, MLP-1 will undergo ground control hardware testing at Kennedy’s Launch Pad 39B. Upon completion, the platform will move to the Vehicle Assembly Building’s High Bay 3 to begin its stacking with Ares I-X.

During the handover ceremony, Brett Raulerson, United Space Alliance manager for MLP operations, received a commemorative plaque that will be hung in the MLP shop. An identical plaque also will hang in Kennedy’s Launch Control Center.           

   “This MLP is the workhorse of the fleet,” Raulerson said. “It’s exciting to know it’s going to support three (space) programs before it is finished.” 

    Following the Ares I-X flight test, MLP-1 will be disassembled.


By Frank Ochoa-Gonzales

Constellation on the Move

A full-scale mock-up of NASA’s Orion launch abort system began a week-long flatbed trailer ride across the country Tuesday, en route to White Sands Missile Range in New Mexico from NASA’s Langley Research Center in Hampton, Va. Once at White Sands, the rocket-like structure will help NASA prepare for this year’s abort system test, called Pad Abort 1.

During its journey, the LAS pathfinder will break from the drive to visit museums along the way. Museum visits include:

* Adventure Science Center in Nashville, Tenn., on Wednesday, March 4
* Science Museum Oklahoma in Oklahoma City on Friday and Saturday, March 6 and 7
* Don Harrington Discovery Center in Amarillo, Texas, on Sunday, March 8
* New Mexico Museum of Space History in Alamogordo, N.M., on Monday, March 9

For more about the launch abort system pathfinder and updates during the road trip, visit: 

It's All About the Stars

What do the patches and pins that represent NASA’s Constellation Program and its projects symbolize? Most of you have seen the crew patches, similar to the shoulder patches worn by members of the military units, that are used to identify each NASA mission. 

Today, many of NASA’s programs and projects have informally adopted emblems — and make them into patches — to build team pride and identification. 


The Constellation emblem is intended to represent NASA’s effort to continue exploration from Earth to the Moon, Mars and beyond. According to Constellation patch designer Mike Okuda, the three crescents represent these three worlds, in order of distance, and in order of the increasing challenges that must be overcome to reach them. He says the crescents might also suggest worlds illuminated by the light of knowledge.


The emblem’s red vector suggests the outward direction of exploration, a symbol borrowed from the NASA agency insignia. Similarly, the dark blue background is deliberately suggests the NASA insignia. The 10 stars signify the 10 NASA centers working to return to the Moon.


Okuda says the outer equilateral triangle suggests simplicity and strength — the extraordinary engineering efforts it will take to achieve Constellation’s objectives.


The Orion crew exploration vehicle patch represents that project’s efforts to develop an advanced spacecraft that will take astronauts to the International Space Station, the Moon, and someday to Mars and beyond.  The patch also employs the equilateral frame, a unifying element in all of Constellation’s patches. The blue sphere is represents Earth. The red flight path illustrates the first missions to the space station, but then it shoots outward to the three large stars, implying the Moon, Mars, and worlds beyond. Okuda says the three stars also evoke the belt in the constellation Orion, while the other 10 other stars, arranged to suggest the same constellation, represent NASA’s 10 centers.


The Ares launch vehicles patch illustrates the sheer power needed for a spacecraft to escape Earth’s gravity and reach for the stars. Okuda says the single bright star represents the launch vehicles, suggesting the dreams those vehicles will carry into the heavens. The light illuminates the crescent Earth, and once again, the 10 stars represent the NASA centers.


Okuda also designed the Altair lunar lander patch, which is based on the mission patch for the historic Apollo 11 moon landing. The eagle on the patch, of course, represents the United States. Eagle also was the name of the Apollo 11 Lunar Module, the first human-piloted spacecraft to land on the moon. To distinguish the project patch, the eagle faces in the opposite direction, since it represents humankind’s return to the moon.


On the patch, the eagle carries an olive branch to represent peaceful exploration of space. The 10 stars are arranged to represent the constellation Aquila, or the eagle, of which the brightest star is Altair, translated as “the flying one.”  The “A” in the word “Altair” is based on NASA’s original mission patch for Project Apollo. According to Okuda, engineers working on Altair asked the eagle’s wing extend beyond the frame of the background triangle to signify their determination to use creative thinking to solve the many challenges they will face in such an ambitious effort.


Ares V RFP: Looking for a Few Good Requirements

On Jan. 5, NASA issued a request for proposal for Phase I concept definition and requirements development for the Ares V heavy lift rocket. The Ares V is a key transportation system for exploration beyond low Earth orbit, as well as NASA’s primary vessel for safe, reliable delivery of large-scale hardware to space. It is a primary component of the Constellation Program to help carry human explorers back to the moon, then onward to Mars and other destinations in the solar system.

Ares V offers unprecedented payload capabilities — 40 percent more payload to Trans Lunar Injection (TLI) by itself than the Saturn V was designed to deliver.  In combination with Ares I, it can deliver nearly 60% more to TLI than Saturn V.  The Ares V increased payload and volume capability will make it the largest launch vehicle ever built as well as a national asset with potential users outside NASA. The astronomy, planetary science and Earth science communities already have shown interest in Ares V.

For such a large endeavor, the Ares team at Marshall has strategically solicited the help of other NASA programs, NASA centers, experts with experience going back to the Saturn and Apollo development, as well as industry expertise to create the best design possible for the nation’s next space craft to the moon and beyond. This desire for input from various areas of expertise is captured in the recent Ares V Request for proposal (RFP).

What’s in the RFP?
The Ares V Phase I solicitation includes five separate work packages available for bid. The packages include evaluation of specific Ares V elements including the payload shroud that will protect the Altair lunar lander during launch, the Earth Departure Stage, the core stage, and avionics and software. The products for these packages include assessing risks and opportunities for the point of departure (POD) architecture, trade studies and analysis, assessment of NASA requirements and a final report. The fifth work package includes a first stage concept for an upgraded solid rocket fueled booster. It will focus on exploring booster options and abilities to increase performance and operability.

Proposals are due Feb. 17. Contracts are slated to be awarded in March or April 2009. The period of performance for each contract is 18 months with two, one-year options. Multiple awards per element could be awarded.

NASA-led assessments, analysis and trade studies coupled with industry study packages will feed into the final POD architecture and element definition for Phase I. This work will enable the Ares V team to move to element prime contracts for Phase II in the 2012 timeframe.
What Does Phase I Include?

Phase I will focus on defining system level requirements, validating that they can be accomplished with maximum utility in regard to cost, reliability, operability and performance and reducing risk for design, development, test and evaluation (DDT&E).

In Phase I, NASA is engaging industry to assess our designs, identify risks and opportunities, and develop trade studies and analyses. This is to ensure we clearly define our concept of operations, requirements, interfaces, and design concepts for Ares V prior to prime contractor procurement activities.

Phase I will include contractor support to NASA design efforts through the Ares V Systems Requirements Review (SRR) in June 2011 and the System Definition Review (SDR) slated for spring 2012.

Practicing for the Moon

Here’s a picture of NASA’s Lunar Electric Rover getting ready to practice docking with some lunar habitat mockups. Test engineers at the Johnson Space Center spent the day recently seeing how the rover docked with different habitat configurations. The one you see in the picture hasn’t been tested yet, but is called the Toroidal Habitat Mockup. It’s basically a giant plywood mockup of an inflatable donut-shaped habitat that is giving the teams ideas of what will work best on the moon.

Your First Look

Here’s a look at the full-size mockup of NASA’s Orion crew exploration vehicle being tested in the water off the coast of Maryland. This mock-up weighs 18,000 pounds and will help the teams get a good idea of what happens both inside and outside the spacecraft after it lands in the ocean.


This scene shows NASA and Department of Defense personnel familiarizing themselves with the Navy-built Orion mockup in a test pool at the Naval Surface Warfare Center’s Carderock Division in West Bethesda, Md. Ocean testing will begin April 6 off the coast of NASA’s Kennedy Space Center in Florida. The goal of the operation, dubbed the Post-landing Orion Recovery Test, or PORT, is to determine what kind of motions the astronaut crew can expect after landing, as well as conditions outside for the recovery team. The experience will help NASA design landing recovery operations including equipment, ship and crew necessities.


NASA also will showcase the mockup in a day-long public event March 30 on the National Mall in Washington. The mockup of the Orion will be parked on the Mall between 4th and 7th Streets, SW, in front of the National Air and Space Museum. The spacecraft mockup is on its way from water testing at the Naval Surface Warfare Center to open water testing in the Atlantic off the coast of the Kennedy Space Center.



A Rocket's Coat of Many Colors

Why are the Ares rockets different colors on the top and bottom? Why do some rockets like the Saturn have black and white strips resembling a checkerboard? The answer to these questions may be as simple as determining what type of material a rocket is made of, or you might be surprised to learn that some of these markings assist in the successful launch of a vehicle. If you look back to the early prototypes of the V2 rockets designed by the German rocket scientists that were painted in the familiar black-and-white roll pattern scheme. This scheme was designed to aid in tracking the rocket after launch. The pattern made it easy to observe any variation or roll of the rocket, based on what colors were visible from a particular angle on the ground. Today’s vehicles can be accompanied by a detailed document called the External Vehicle Markings (EVM) Document. This manual contains everything you might need to know regarding location, size and colorings of various logos and markings on a vehicle. The markings on a rocket may change over its lifetime as the design matures, so these changes are documented in the EVM to ensure consistency. With each new variation in a rocket’s design, the pattern is examined and altered as warranted to meet new flight objectives. The Saturn V for example had a series of black markings on all three sections, or stages, of the rocket. During launch as each stage separated engineers were able to use the markings on the next stage to track the vehicle. The shuttle was designed to look more like a plane so there was no need for markings to determine its roll. However NASA’s first two orbiter test flights–STS-1 and STS-2–did have external tanks that were painted white to protect them from exposure to ultraviolet rays during extended periods on the launch pad. Later it was determined the paint wasn’t vital for tank protection, so painting was abandoned to free up weight – about 600 pounds – for additional payload. All external tanks arrive from the assembly facility are a light tan in color, and can eventually reach a chocolate brown depending on how long it sits on the pad in the sun. NASA’s newest rockets –the Ares launch vehicles – each have their own distinct appearance. The first test vehicle scheduled to fly later this year– the Ares I-X –will have a black “Z-Mark” that wraps around the first-stage solid rocket motor. This marking was added by designers to help engineers determine the orientation and roll of the vehicle during launch and ascent.


Additional markings could be added to the Ares vehicles as the development process continues. So the next time you see a rocket with its funny black, white or orange colorings remember there is probably more to the story than meets the eye.