The Fermi LAT Instrument Team meets at CERN

The international team who built and operate the Large Area Telescope, one of two instruments on the Fermi Gamma-ray Space Telescope (often known simply as Fermi), will have a meeting at CERN (the European particle accelerator facility that runs the Large Hadron Collider).

BQSO-poster

The program includes a full day of public scientific, outreach and art projects on 29 March in CERN’s Main Auditorium, designed to promote scientific and cultural collaboration with CERN users interested in learning more about the LAT.

Over the course of the day, scientists will present results from Fermi and from CERN’s experimental and theoretical groups active in dark matter searches and the study of cosmic rays.

At 7 p.m., the collaboration will present the Blazing Quasi-Stellar Object, a multimedia work by Italian artist Luca Pozzi and curated by the Francesco Urbano Ragazzi duo. The work is structured as a lecture-performance featuring visual animations. Pozzi has a profound fascination for the scientific ideas underlying modern multimessenger astrophysics and feeds his inspiration through a continuous dialogue with scientists. Pozzi will deliver his lecture on Tiziano’s painting Bacco e Arianna and will guide the audience in an analysis of this late Renaissance masterpiece focusing on the complex stratifications connecting this painting to the frontiers of multimessenger astrophysics.

In addition, there is a 3D animated screen saver, The Big Jump Theory, designed by the artist and expressing an imaginary theory inspired by quantum gravity, gravitational waves and the gamma-ray sky as seen by Fermi.

09_Luca Pozzi_BQSO_The Big Jump Theory_still from animation_2017Click on this image to download the screensaver.

LIGO and Fermi: Addressing questions about scientific certainty

In April, the NASA Fermi Gamma-ray Burst Monitor (GBM) team announced the discovery of a weak gamma-ray burst that may be associated with the recent LIGO discovery of gravitational waves from a black hole merger, an event known as GW150914. The team notes that Fermi observations associated with future LIGO/Virgo gravitational wave detections are needed to reveal whether this weak burst is a plausible counterpart or a chance coincidence. The NASA Fermi team stands behind this finding, which has successfully passed through the scientific review process and is awaiting publication in a special issue of The Astrophysical Journal.

The AntiCoincidence Shield of the European Space Agency’s INTEGRAL spacecraft, however, did not detect the GBM burst, a result that might be incompatible with the Fermi finding, a possibility noted in the discovery paper. In an effort to resolve this apparent discrepancy, three members of the Fermi team who are not authors of the discovery paper undertook an alternate analysis of the spectral properties of the GBM data. These authors conclude that while the signal was consistent with the INTEGRAL data, it was also consistent with a fluctuation of background noise.

To establish the existence and significance of the burst, the authors of the original paper included data from all 14 GBM detectors, a result that is not addressed in the new study. The team also examined spectral information from two GBM detectors in an effort to further understand the nature of the signal. The new study applies a different analysis method to the data from the same two detectors and finds a different spectral shape.

Careful examination and criticism of assumptions, analysis methods and interpretations is a normal part of the scientific process. The Fermi team is committed to open scientific dialogue. The authors of both studies are working together (and with the INTEGRAL team) to explore these differences further.

Extreme Astrophysics as Food

Pulsars are some of the most exotic objects detected by the Fermi satellite. They are a special kind of neutron star, ultra-dense remnants of very massive stars whose lives end in supernovae. They are about 10 km in radius and have the mass of ~1.5 Suns. They rotate very quickly -- they spin once every 0.001-100 seconds! -- and have very strong magnetic fields. They emit over a wide range of energies, including radio emission and the gamma rays seen by the LAT. Pulsars are tilted (like the Earth); their rotation and magnetic axes are offset, and so their radiation appears to pulse as it crosses our line of sight. About 25% of pulsars detected by Fermi are "radio quiet" and seen only in gamma rays.
Cake by Sylvia Zhu, David Green and Judy Racusin. Pulsar Technical Consultant was Megan DeCesar
The 2013 AAS Rossi prize was awarded to Alice Harding (GSFC) and Roger Romani (Stanford) for their work on gamma-ray pulsar modeling. So when it came time to enter the "Science as Food" competition in the annual Goddard poster party, it seemed only fitting to create a tribute to pulsars -- in cake form.

For our pulsar cake, the "neutron star" was a hemispherical vanilla cake with Swiss buttercream frosting. The cake was very dense, but not as dense as a real neutron star (a teaspoon of neutron star would weigh more than a mountain!). The surface of a real neutron star sometimes cracks under the strains of rapid rotation and large magnetic field. To show this cracking, the cake surface was covered in thin pieces of poured sugar (similar to Jolly Ranchers) and sugar crystals.

The radio emission sweeps around like a lighthouse beam as a pulsar rotates, and comes out from the magnetic poles. The radio beam was represented by a cone of styrofoam covered in fondant, and was the only nonedible part of the cake. The magnetic field lines also start from the magnetic poles; ours were made of pulled sugar, like candy canes. In a real pulsar, the closed field lines would not have been so tight and close to the neutron star (but real pulsars don't have to worry about fitting everything onto a cake stand).

The light cylinder is defined by the radius at which the magnetic field lines would have to travel at the speed of light in order to co-rotate with the neutron star. The gamma rays that Fermi observes originate in the outer magnetosphere near the light cylinder; we represented these regions with purple cotton candy. (This turned out to be an unfortunate choice given the surprising warmth and humidity of the day.) The entire setup was placed on a rotating cake stand; we were able to safely spin our pulsar at a speed of a few rotations per second.

After the judging process (we won the contest, although -- in the interest of full disclosure -- there was only one other entry) we removed the field lines and sliced up the neutron star. The cake pieces were all eaten within a few minutes. And although our pulsar cake was only a cartoonish representation of a pulsar, it was certainly much more delicious than a real pulsar would have been.

1000 Fermi Bursts!

The gamma-ray burst monitor (GBM) instrument on Fermi detected its 1000th gamma-ray burst today! This figure from Valerie Connaughton shows the location on the sky of these 1000 cosmic explosions.


The 1000th burst was detected at 21:03 UT on September 21. It lasted for around 3 seconds, and consisted of a single large pulse of gamma-rays. It was automatically detected on board the observatory by the GBM and an alert was sent to the ground, that was then relayed to a worldwide team of astronomers in less than 15 seconds.

Originally, predictions indicated that we would need to wait for around 5 years before getting to the 1000th burst.  However, due to excellent search routines implemented by the team of scientists who developed GBM, the rate of GRB detections has been significantly higher.

GRBs allow Fermi to see farther than any other class of object itdetects and  each GRB is a probe of the oldest and most violentexplosions in the Universe. Every new one helps us better understand these interesting events.

The Sound of a Fermi Gamma-ray Burst

What does the universe look like at high energies? Thanks to the FermiLarge Area Telescope (LAT), we can extend our sense of sight to “see”the universe in gamma rays. But humans not only have a sense of sight,we also have a sense of sound. If we could listen to the high-energyuniverse, what would we hear? What does the universe sound like?


A gamma-ray burst, the most energetic explosions in the universe, converted to music. Made by Sylvia Zhu (music) and Judy Racusin (animation)

Every photon has its own energy and frequency; the higher the energy, the higher the frequency. Some photons have just the right frequencies for us to see them as different colors, while others — such as the gamma rays studied by the Fermi LAT — are much too energetic to be seen with our eyes. Sound waves have frequencies too, and similarly, we can hear some of them as musical notes. So what happens if we convert high-energy photons into musical notes?

Gamma-ray bursts (GRBs) are some of the most powerful explosions in the universe. GRB 080916C was a particularly energetic burst that occurred in September of 2008. The brightest part of it lasted less than a minute, during which the LAT detected hundreds of gamma rays from the extremely-distant explosion; when we converted the data to music, we slowed the rates down by a factor of five times to hear the individual gamma rays better.

In translating the gamma-ray measurements into musical notes we assigned the photons to be “played” by different instruments (harp, cello, or piano) based on the probabilities that they came from the burst. This particular conversion is a fairly simple one; We built this on work done by other members of the LAT team (Luca Baldini and Alex Drlica-Wagner) who explored converting our data into music in different ways.

In the beginning of the song, before the burst starts, the harp plucks out a few lonely notes. After about half a minute, the piano joins in on top of the harp background, and the notes begin to pile on more and more rapidly. The cello enters the scene as the burst begins in earnest.

We created an accompanying animation to help see what is happening. The top panel shows each individual gamma-ray. The colors refer to low (red), medium (blue) and high (green) quality gamma-rays (played by harp, cello and piano respectively). The energy of the gamma-ray is on the y-axis (higher energy gamma-rays are towards the top of the plot) and the arrival time of the gamma-rays are on the x-axis (later arriving gamma-rays are further to the right). The vertical white line tells you where the music is currently playing. The bottom panel shows the number of gamma-rays (which is the number of notes played) in each time slice.

By converting gamma rays into musical notes, we have a new way of representing the data and listening to the universe.

Happy Birthday Fermi

The cake features a (hand drawn) Fermi gamma-ray skymap, showing the bright bandproduced by diffuse emission from the disk of our Galaxy, the Fermibubbles (in black) – huge lobes of gamma-rays extending above and below theGalactic disk, and many point sources of gamma-rays (active galaxies,pulsars and much more).

The Fermi observatory, sculpted here from fondant, shows the Large AreaTelescope (grey box) and a 3-d representation of the NaI (black/yellow)and BGO (orange) detectors of the gamma-ray burst monitor. Combinedthese instruments provide observations over an extraordinarily largeswath of the electromagnetic spectrum (from 8keV to over 300 GeV).

A pen is included to show the scale – this was a monstrous cake! The 70 or soof us at the launch anniversary celebration only got through half thecake, despite being a delicious combination of chocolate and vanilla. This is fortunate for our waistlines given the followingingredient list:
7 lbs flour
9 lbs sugar
30 eggs
6 lbs butter
3 lbs marshmallow
1 lb corn starch
8 cups of buttermilk

Fermi on the go! Fermi iPhone App now available

You can now keep up to date with Fermi activities via a new iphone/ipad app developed by my Italian colleagues. This is available from iTunes  (search for “fermi” to find it). Some screenshots are shown below:

The timing of this release is not accidental – the world-wide community of Fermi-users are meeting in Rome next week for the 3rd Fermi Symposium (the first was in Palo Alto, California in 2007 and the second was in Washington, DC in 2009). Over 400 scientists are meeting to discuss the implications of the exciting observations we have made with Fermi over the past 3 years, and to announce new discoveries. These meetings occur roughly every 18 months, and are a major highlight in the Fermi scientific calendar. Keep your eye out for announcements of new Fermi results next week!

Fermi and solar eclipses

A solar eclipse occurs when the moon comes between the Sun and the Earth and thus casts a shadow on Earth. The shadow can be quite large – as you can see from the excellent image in the January 2, APOD.

There will be a partial solar eclipse tomorrow (January 4). Fermi orbits the Earth every 96 minutes: for two of those orbits tomorrow Fermi will pass through the shadow of the eclipse. This won’t cause any problems – each orbit, we pass through the nighttime and thus dark side of the Earth. Passing through the eclipse means that we will spend a little more time recharging the spacecrafts battery from the solar panels than we would ordinarily need.

The Fermi flight operations team closely monitors the performance of the observatory,  they need to know if we will pass through an eclipse so that we won’t interpret the change in battery charging performance as a potential problem on the spacecraft.

It’s neat to think that a observatory designed to detect gamma-rays from the Universe can notice more classical local phenomena on Earth.

Fermi's Spectacular Second Year

Happy Launch Anniversary to Fermi!!
Only two short years ago we watched Fermi take a perfect ride into orbit.

It turns out that the only thing better than Fermi’s fantastic first year is its spectacular second year. The data from both instruments are now being analyzed by scientists around the world. The Large Area Telescope team released a first catalog, which was based on 11 months of observations and contains 1451 gamma-ray sources (this is 5x larger than previous catalogs at similar energies).  One of the great things about Fermi is that even though we have beenobserving for almost 2 years that is not the end of the story. Thegamma-ray sky changes every day. Because Fermi sees so much much of the sky for so much of the time, we not only see things we expect to be interesting, but also get to watch the unscripted reality show that is the gamma-ray universe. Here are some of the highlights from the past year.

  • the active galaxy 3C 454.3 briefly became the brightest persistent object ever seen in the gamma-ray sky in December — link
  • the microquasar Cygnus X-3 (a compact object and massive star binary system) flared and was definitively detected in gamma rays for the first time — link
  • the gamma-ray bursts burst (and gave us some insight into properties of space-time) — link

As Fermi continues to watch the sky, we will continue to catch gamma-rays sources doing amazing things. It has been a wonderful two years, and I am looking forward to the next one.

Fermi in Cambodia

     

Last March, I spent an afternoon talking about Fermi to the children at Aziza’s place in Phnom Penh, Cambodia.  Aziza’s place is a home and learning center for impoverished children. I was in Cambodia to visit my sister. She lived in an apartment next door to Aziza’s place and and had come to know the people at Aziza’s place. She suggested that I might like to visit and talk with the children about Astronomy, NASA and Fermi. It was a remarkable experience. The children had several astronomy lessons and activities in anticipation of my visit and were extremely enthusiastic and friendly. The discussion started with Fermi and astronomy and rapidly expanded to include rockets, spaceflight and the nature of the moon.