Tag Archives: ISS

Next Generation Wants Its Mars Shot

Posted on by .

By Beverly Perry

We don’t know who will take those first steps on Martian soil, ushering in the age of humans as a multi-planetary species. But we do already know a couple things about those first intrepid explorers: They’re taking steps on Earth right now; and they belong to a generation that is tech-savvy, and raised on the internet and social media. But do today’s students think about exploring beyond this world and into deep space?

University of Illinois Urbana-Champaign student rocketry team

Members of the University of Illinois Urbana-Champaign’s rocketry team said at NASA’s Student Launch competition that they look forward to NASA’s Journey to Mars and aspire to be a part of it.

“Every day – we can’t get enough of that stuff!” said Ben Collins from the University of Illinois Urbana-Champaign on a recent windy morning that was spent launching rockets in a field north of Huntsville. Collins and his teammates were among 51 student rocketry teams that competed in various challenges and sent their amateur rockets soaring during the 16th annual Student Launch rocketry challenge April 13-16.

Tuskegee University’s rocketry team at NASA’s Student Launch competition

Members of Tuskegee University’s rocketry team enjoy their day at NASA Marshall’s Student Launch.

At this year’s Student Launch, middle and high school students and university computer scientists, physicists and engineers of all stripes (aerospace and mechanical were particularly well-represented) got to tour NASA’s Marshall Space Flight Center, the center responsible for developing the Space Launch System (SLS), the country’s next-generation heavy-lift launch vehicle.

While there, the students heard from a member of their generation actively involved in designing and engineering SLS: Marshall engineer Kathryn Crowe, who is part of a generations-spanning workforce blending fresh thinking with years of experience. (See Time Flies: Next-Generation Rocket is the Work of Generations for more about Kathryn’s work.)

For some, the competition – and the visit – were a taste of things to come.

“My biggest career goal is to work on the Journey to Mars – to somehow be a part of it,” said Brandon Murchinson, also of the University of Illinois Urbana-Champaign. “I think SLS is incredible. As someone who’s always been interested in space exploration and travel, it’s why I chose this career path.”

NASA’s call for new astronauts earlier this year also made an impact on the future engineers and scientists at the Student Launch. Paul Grutzmacher, a 17-year-old senior at St. Vincent-St. Mary High School in Akron, Ohio, said that his career goal is to become a pilot for the Orion crew vehicle that will launch on SLS. “SLS excites me because it’s supposed to take us farther than we’ve gone before and it’s also our next heavy lifter,” he added.

St. Vincent-St. Mary High School rover at 2016 Student Launch.

St. Vincent-St. Mary High School’s Project Manager Raykwon Wookdruff describes the team’s rover, which autonomously located the team’s downed rocket, providing a proof of concept that an autonomous rover on Mars could locate and retrieve a supply rocket without astronauts having to leave the vicinity of their habitat.

Grutzmacher thinks he’s got the right stuff to fly on SLS, but so does Vanderbilt University’s Rebecca Riley, a senior computer science major who plans to continue her education in particle physics. “I think we’re all pretty excited that we might be the right age to be going to Mars. I’m like, Man, that’s going to be me going to Mars!”

These students recognize the value in missions that build expertise in long-duration spaceflight – and the technological spinoffs that arise from the process. To hear them tell it, long timelines just don’t scare them.

Auburn University’s student rocketry team tracks progress on America’s next great rocket by following social media and events like solid rocket booster static test firings and RS-25 main engine tests. “Social media makes it a lot more tangible,” said Auburn’s Burak Adanur. “And I think it gives people something to look forward to,” he said.

Vanderbilt University’s Andrew Voss has participated in the Student Launch over the past four years. “I have seen a lot of work go down,” he said. “And I like seeing the test stands because the work that goes into testing is a feat of engineering.” Check out our recent blog post on Engine 2059 for more about how an engine helped test a test stand.

Tech-obsessed students have no trouble spouting off advancements that have arisen from America’s space program: cell phone cameras, scratch-resistant sunglasses, memory foam, and the list goes on. Vanderbilt’s Voss said, “That’s part of what NASA’s always done, and what could come out of SLS is not just spaceflight, but technology that drives the world forward.”

Vanderbilt University rocketry team launches rocket

Members of Vanderbilt University’s student rocketry team spoke about the future of deep space exploration after successfully launching their rocket.

“I think that’s one of the most important aspects to space exploration,” said Auburn’s Adanur. “We have to go space because it’s a mechanism – it’s a crucible – that will change us as a society and give us new technologies. I think it has more of a ripple effect than most people think.”

Chris Lorenz of the University of Illinois at Urbana-Champaign said he sees the value of NASA’s proving ground missions to build up for human Mars landings. “I’m a big fan of what NASA does in robotic exploration. It’s smart to go unmanned and build up infrastructure first before attempting manned missions,” he said.

Vanderbilt’s Mitch Masia said that while proving ground missions are necessary, deep space exploration really gets people going. “The space station is awesome and a huge feat and deep space missions will get people even more excited.” Case in point: Worldwide amazement and wonder at the photos of Pluto NASA’s New Horizons spacecraft has been sending back to Earth.

Sylvania Northview High School rocketry team at NASA’s Student Launch competition

Members of Sylvania Northview High School’s rocketry team explain their project to other students during the Rocket Fair at NASA’s Marshall Space Flight Center the day before launch.

Participants at the Student Launch emphasized that their generation wants its chance to make history. They want their Mars shot. “I think SLS will bring our generation together,” said Michael D’Onofrio, a 17-year-old senior at Sylvania Northview High School in Sylvania, Ohio. “Something that’s greater than where we are – going beyond Earth – will bring us together.”

Vanderbilt’s Riley said, “I’m excited about SLS in a very patriotic way. SLS and going to Mars is that big goal that we can all get behind and be excited about as an American people.”


Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

#YearInSpace: Mars, Miles, Months, Mass and Momentum

Posted on by .

During his yearlong mission aboard the International Space Station, Scott Kelly traveled over 143 million miles in orbit around Earth.

On average, Mars is 140 million miles away from our planet.

Coincidence? Well, basically.

Scott Kelly with plant-growth experiment

NASA astronaut Scott Kelly took this selfie with the second crop of red romaine lettuce in August 2015. Research into things like replenishable food sources will help prepare the way for Mars. (And the red lettuce even kind of matches the Red Planet!)

There’s nothing average about a trip to Mars; so of course you don’t travel an “average distance” to get there. Launches for robotic missions – the satellites and rovers studying Mars today – are timed around when Earth and Mars are about a third of that distance, which happens every 26 months.

While the shortest distance between two points is a straight line, straight lines are hard to do in interplanetary travel. Instead, Mars missions use momentum from Earth to arc outward from one planet to the other. The Opportunity rover launched when Earth and Mars were the closest they’d been in 60,000 years, and the rover still had to travel 283 million miles to reach the Red Planet.

On the International Space Station, Scott Kelly was traveling at more than 17,000 miles per hour, an ideal speed for orbital research that keeps the station steadily circling Earth every 90 minutes. To break free of orbit and go farther to deep space, spacecraft have to travel at higher speeds. Opportunity, for example, traveled at an average of 60,000 miles per hour on the way to Mars, covering twice the distance Kelly traveled on the station in just over half the time.

Graphic showing Opportunity’s trajectory from Earth to Mars

Although Earth and Mars were relatively close together when Opportunity launched, the rover’s trip out was twice the average distance between the two planets.

The fastest any human being has ever traveled was the crew of Apollo 10, who hit a top speed of almost 25,000 miles per hour returning to Earth in 1969. For astronauts to reach Mars, we need to be able to propel them not only faster than the space station travels, but faster than we’ve ever gone before.

But the real lesson of Kelly’s year in space isn’t the miles, it’s the months. The human body changes in the absence of the effects of gravity. The time Kelly spent in space will reveal a wealth of new data about these changes, ranging from things like how fluid shifts in microgravity affected his vision to the behavioral health impacts of his long duration in the void of space. This information reveals more about what will happen to astronauts traveling to Mars and back, but it also gives us insight into how to equip them for that trip, which will be approximately 30 months in duration round-trip. What sort of equipment will they need to keep them healthy? What accommodations will they require to stay mentally acute? What sort of vehicle do we need to build and equip to send them on their journey?

Months and millions of miles. Momentum and mass. These are some of the most basic challenges of Mars. We will need to build a good ship for our explorers. And we will need the means to lift it from Earth and send it on its way fast enough to reach Mars.

An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans

An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans.

While Scott Kelly has been living in space helping us to learn more about the challenges, we’ve been working on the rocket that will be a foundational part of addressing them. Scott Kelly left Earth last year half a month after the Space Launch System (SLS) Program conducted a first qualification test of one of its solid rocket boosters. Since then, we have conducted tests of the core stage engines. We’ve started welding together fuel tanks for the core stage. We’ve begun assembling the upper stage for the first flight. We’ve been building new test stands, and upgraded a barge to transport rocket hardware. The Orion program has completed the pressure vessel for a spacecraft that will travel around the moon and back. Kennedy Space Center has been upgrading the facilities that will launch SLS and Orion in less than three years.

And that’s just a part of the work that NASA’s done while Kelly was aboard the space station. Our robotic vanguard at Mars discovered evidence of flowing liquid water, and we’ve been testing new technologies to prepare us for the journey.

Down here and up there, it’s been a busy year, and one that has, in so many ways, brought us a year closer to Mars. The #YearInSpace months and millions of miles may be done, but many more Mars milestones are yet to come!


Next Time: Next Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!