Five “Secrets” of Engine 2059

Earlier this month, another successful test firing of a Space Launch System (SLS) RS-25 engine was conducted at Stennis Space Center in Mississippi. Engine testing is a vital part of making sure SLS is ready for its first flight. How do the engines handle the higher thrust level they’ll need to produce for an SLS launch? Is the new engine controller computer ready for the task of a dynamic SLS launch? What happens when if you increase the pressure of the propellant flowing into the engine? SLS will produce more thrust at launch than any rocket NASA’s ever flown, and the power and stresses involved put a lot of demands on the engines. Testing gives us confidence that the upgrades we’re making to the engines have prepared them to meet those demands.

If you read about the test – and you are following us on Twitter, right? – you probably heard that the engine being used in this test was the first “flight” engine, both in the sense that it is an engine that has flown before, and is an engine that is already scheduled for flight on SLS. You may not have known that within the SLS program, each of the RS-25 engines for our first four flights is a distinct individual, with its own designation and history. Here are five other things you may not have known about the engine NASA and RS-25 prime contractor Aerojet Rocketdyne tested this month, engine 2059.

Engine 2059 during testing at Stennis Space Center on March 10
Engine 2059 roars to life during testing at Stennis Space Center.

1. Engine 2059 Is a “Hubble Hugger” – In 2009, the space shuttle made its final servicing mission to the Hubble Space Telescope, STS-125. Spaceflight fans excited by the mission called themselves “Hubble Huggers,” including STS-125 crew member John Grunsfeld, today the head of NASA’s Science Mission Directorate. Along with two other engines, 2059 powered space shuttle Atlantis into orbit for the successful Hubble servicing mission. In addition to its Hubble flight, engine 2059 also made four visits to the International Space Station, including the STS-130 mission that delivered the cupola from which station crew members can observe Earth below them.

Launch of Atlantis on STS-125
The engine farthest to the left in this picture of the launch of the last Hubble servicing mission? That’s 2059. (Click for a larger version.)

2. The Last Shall Be First, and the Second-to-Last Shall Be Second-To-First – The first flight of SLS will include an engine that flew on STS-135, the final flight of the space shuttle, in 2011. So if the first flight of SLS includes an engine that flew on the last flight of shuttle, it only makes sense that on the second flight of SLS, there will be an engine that flew on the second-to-last flight of shuttle, right? Engine 2059 last flew on STS-134, the penultimate shuttle flight, in May 2011, and will next fly on SLS Exploration Mission-2.

View of the test stand during the test of engine 2059 at Stennis Space Center on March 10.
The test of engine 2059 at Stennis Space Center on March 10.

3. Engine 2059 Is Reaching for New Heights – As an engine that flew on a Hubble servicing mission, engine 2059 has already been higher than the average flight of an RS-25. Hubble orbits Earth at an altitude of about 350 miles, more than 100 miles higher than the average orbit of the International Space Station. But on its next flight, 2059 will fly almost three times higher than that – the EM-2 core stage and engines will reach a peak altitude of almost 1,000 miles!

Infographic about engine testing
Click to see larger version.

4. Sometimes the Engine Tests the Test Stand – The test of engine 2059 gave the SLS program valuable information about the engine, but it also provided unique information about the test stand. Because 2059 is a flown engine, we have data about its past testing performance. Prior to the first SLS RS-25 engine test series last year, the A1 test stand at Stennis had gone through modifications. Comparing the data from 2059’s previous testing with the test this month provides calibration data for the test stand.

NASA Social attendees with engine 2059 in the background
Attendees of a NASA Social visiting Stennis Space Center being photobombed by engine 2059.

5. You – Yes, You – Can Meet Awesome SLS Hardware Like Engine 2059 – In 2014, participants in a NASA Social at Stennis Space Center and Michoud Assembly Facility, outside of New Orleans, got to tour the engine facility at Stennis, and had the opportunity to have their picture made with one of the enginesnone other than 2059. NASA Social participants have seen other SLS hardware, toured the booster fabrication facility at Kennedy Space Center in Florida, and watched an RS-25 engine test at Stennis and a solid rocket booster test at Orbital ATK in Utah. Watch for your next opportunity to be part of a NASA Social here.

Watch the test here:
https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=njb9Z2jX2fA[/embedyt]

If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Next Time: We’ve Got Chemistry!

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Time Flies: Next-Generation Rocket Is the Work of Generations

This week’s Rocketology post is by the newest member of the SLS communications team, Beverly Perry.

When NASA’s Space Launch System (SLS) first flies, it will slice through Earth’s atmosphere, unshackling itself from gravity, and soar toward the heavens in an amazing display of shock and awe. To meet the engineering challenges such an incredible endeavor presents, NASA’s Marshall Space Flight Center draws upon a vast and diverse array of engineering talent, expertise and enthusiasm that spans multiple disciplines and, in some cases, a generation. Or two.

Kathryn Crowe is a twenty-something aerospace engineer who tweets from her smartphone and calls herself a “purveyor of the future.” Hugh Brady, on the other hand, began his career at Marshall during the days of punch cards and gargantuan room-sized IBM mainframes with an entire 16 kilobytes (!) of memory.

Kathryn Crowe and Hugh Brady
While they’ve had very different experiences, Kathryn Crowe and Hugh Brady share a common excitement for their work on SLS.

But if you think these two don’t have much common ground on which to build a strong working foundation, well, think again. Although the two aerospace engineers may be separated by a couple generations, they speak of each other with mutual admiration, respect and enthusiasm. And like any relationship built on a solid foundation, there’s room for fun, too.

Even though Brady’s career spans 50-plus years at NASA, he’s anything but jaded, to hear Crowe tell it. “Hugh still seems to keep that original sense of excitement. I figure if he thinks I’m doing okay, then I must be doing okay since he’s seen almost our entire history as an agency. It’s nice to have him to help keep me straight,” says Crowe, who recently received NASA’s Space Flight Awareness Trailblazer Award, which recognizes those in the early stages of their career who demonstrate creative, innovative thinking in support of human spaceflight. “And, he always tries to bring a sense of humor to everything he does.”

“I’ve enjoyed being mentored by Kathryn,” jokes the seventy-something Brady, who admits to failing retirement (twice, so far) because he loves the space program and can’t stay away. (Also, he said, because he doesn’t care for television. But mostly it’s because he loves space exploration and working with young, talented engineers.)

Crowe and Brady have worked together evaluating design options and deciding on solutions to make the second configuration of SLS as flexible and adaptable as possible. This upgraded configuration – known as Block 1B – adds a more-powerful upper stage and will stand taller than the Saturn V. It could fly as early as the second launch of SLS, which will be the first crewed mission to venture into lunar orbit since Apollo. Block 1B also presents the opportunity to fly a co-manifested payload, or additional large payload in addition to the Orion crew capsule.

Illustration showing the Block 1B configuration of the rocket and 8.4 and 10 meter payload fairing options
The addition of an Exploration Upper Stage to SLS will make the rocket more powerful and open up new mission possibilities.

For Crowe, a self-described “shuttle baby,” working on a future configuration of SLS means the chance to look at the big picture. “I like to have a global view on things. For this particular rocket, we’ve made it as flexible as we can. We can complete missions that we don’t even know the requirements for yet!”

For Brady, “Things have a tendency to repeat.” While technology and solutions continue to improve, some of the challenges of spaceflight will always remain the same. When it comes to wrestling with the challenges of a co-manifested payload, Brady draws on his experience, but focuses on solutions that are tailored for SLS. It’s bringing lessons from the past into the present in order to find the best solution for future missions. “It’s drawing on what we’ve learned from the past but not necessarily repeating the past. We want the best solution for this vehicle,” he emphasizes.

Crowe says the experience and knowledge Brady brought to the table made all the difference when studying options for the SLS vehicle. “Hugh would say, ‘I think we worked on this particular technical problem when we were initially flying.’ He could draw parallels so we didn’t reinvent the wheel,” Crowe says. Since then, Brady has become something of a mentor to Crowe and other younger team members.

“When you put that kind of technical information on the table it gives people better information – information that’s based on prior experience,” Brady says. “We may not pick the same solution, because technology changes over time, but we will have more and better information to use when making decisions.”

“I think that having that kind of precedent to build upon it really is a beautiful thing,” Crowe says.

For his part, Brady says he feels a “comfort” level in passing the United States’ launch vehicle capabilities on to the next generation of engineers and other supporting personnel. “One of the things I find very exciting is to look around and see the young talent around the center with their energy and enthusiasm. I feel good thinking about when I do hang it up – again – that they will carry on and even do more than we did,” he says.

When you ask Crowe if humans will get to Mars, she says, “For sure I think within my lifetime I will see humans on Mars. I think more than ever right now is the right time to return to human spaceflight. We have the right skills and expertise. And when we successfully complete our mission and show that sort of hope to people again, that’s going to be equally as important as technological benefits.”

“That’s the objective,” Brady says. “I can’t wait until we fly again. It’s a tremendous feeling! It’s exhilarating! It’s time.”

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=gXMhOe1pRKc[/embedyt]If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Making a Lot of Fire in Two “Easy” Steps

On one end of the technology spectrum, you have rocket science, mastering the laws of physics to allow human beings to break the chains of gravity and sail through the void of space.

On the other end, you have the earliest humans, first learning to use the world around them in innovative ways to do things they previously couldn’t.

What do these two extremes have in common? Making fire. Just like the secret to learning to cook food was mastering the creation of flames, creating fire is also the secret to leaving the planet.

We just use a much bigger fire.

Close-up of aft end of SLS during launch
Solid rocket motors and liquid-fuel engines will work together to propel the first SLS into space.

If you’ve watched the first video in our No Small Steps series you’ve learned why going to Mars is a very big challenge, and why meeting that challenge requires a very big rocket. In the second installment we talked about how NASA’s Space Launch System (SLS) builds on the foundation of the Saturn V and the space shuttle, and then uses that foundation to create a rocket that will accomplish things neither of them could.

Now, the third No Small Steps video takes a step further by looking at the basics of the monumental energy that makes the rocket go up. If you’ve been following this Rocketology blog and the No Small Steps videos, you’re aware that the initial configuration of SLS uses two different means of powering itself during launch – solid rocket boosters and liquid-fuel engines.

But why? What’s the difference between the two, and what role does each play during launch? Well, we’re glad you asked, because those are exactly the questions we answer in our latest video.

With more SLS engine and booster tests coming in the next few months, this video is a great way to get “fired up” about our next steps toward launch.

https://www.youtube.com/watch?v=http://youtu.be/zJXQQv9UZNg[/embedyt]
If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

#YearInSpace: Mars, Miles, Months, Mass and Momentum

During his yearlong mission aboard the International Space Station, Scott Kelly traveled over 143 million miles in orbit around Earth.

On average, Mars is 140 million miles away from our planet.

Coincidence? Well, basically.

Scott Kelly with plant-growth experiment
NASA astronaut Scott Kelly took this selfie with the second crop of red romaine lettuce in August 2015. Research into things like replenishable food sources will help prepare the way for Mars. (And the red lettuce even kind of matches the Red Planet!)

There’s nothing average about a trip to Mars; so of course you don’t travel an “average distance” to get there. Launches for robotic missions – the satellites and rovers studying Mars today – are timed around when Earth and Mars are about a third of that distance, which happens every 26 months.

While the shortest distance between two points is a straight line, straight lines are hard to do in interplanetary travel. Instead, Mars missions use momentum from Earth to arc outward from one planet to the other. The Opportunity rover launched when Earth and Mars were the closest they’d been in 60,000 years, and the rover still had to travel 283 million miles to reach the Red Planet.

On the International Space Station, Scott Kelly was traveling at more than 17,000 miles per hour, an ideal speed for orbital research that keeps the station steadily circling Earth every 90 minutes. To break free of orbit and go farther to deep space, spacecraft have to travel at higher speeds. Opportunity, for example, traveled at an average of 60,000 miles per hour on the way to Mars, covering twice the distance Kelly traveled on the station in just over half the time.

Graphic showing Opportunity’s trajectory from Earth to Mars
Although Earth and Mars were relatively close together when Opportunity launched, the rover’s trip out was twice the average distance between the two planets.

The fastest any human being has ever traveled was the crew of Apollo 10, who hit a top speed of almost 25,000 miles per hour returning to Earth in 1969. For astronauts to reach Mars, we need to be able to propel them not only faster than the space station travels, but faster than we’ve ever gone before.

But the real lesson of Kelly’s year in space isn’t the miles, it’s the months. The human body changes in the absence of the effects of gravity. The time Kelly spent in space will reveal a wealth of new data about these changes, ranging from things like how fluid shifts in microgravity affected his vision to the behavioral health impacts of his long duration in the void of space. This information reveals more about what will happen to astronauts traveling to Mars and back, but it also gives us insight into how to equip them for that trip, which will be approximately 30 months in duration round-trip. What sort of equipment will they need to keep them healthy? What accommodations will they require to stay mentally acute? What sort of vehicle do we need to build and equip to send them on their journey?

Months and millions of miles. Momentum and mass. These are some of the most basic challenges of Mars. We will need to build a good ship for our explorers. And we will need the means to lift it from Earth and send it on its way fast enough to reach Mars.

An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans
An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans.

While Scott Kelly has been living in space helping us to learn more about the challenges, we’ve been working on the rocket that will be a foundational part of addressing them. Scott Kelly left Earth last year half a month after the Space Launch System (SLS) Program conducted a first qualification test of one of its solid rocket boosters. Since then, we have conducted tests of the core stage engines. We’ve started welding together fuel tanks for the core stage. We’ve begun assembling the upper stage for the first flight. We’ve been building new test stands, and upgraded a barge to transport rocket hardware. The Orion program has completed the pressure vessel for a spacecraft that will travel around the moon and back. Kennedy Space Center has been upgrading the facilities that will launch SLS and Orion in less than three years.

And that’s just a part of the work that NASA’s done while Kelly was aboard the space station. Our robotic vanguard at Mars discovered evidence of flowing liquid water, and we’ve been testing new technologies to prepare us for the journey.

Down here and up there, it’s been a busy year, and one that has, in so many ways, brought us a year closer to Mars. The #YearInSpace months and millions of miles may be done, but many more Mars milestones are yet to come!


Next Time: Next Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Think You’re Stressed? Try Being A Rocket

You know how big the SLS vehicle will be. We described the tremendous power and thrust of just one of the RS-25 engines after last year’s test firings. You may have witnessed live as we fired one of the massive five-segment solid rocket boosters last March. Through all that, perhaps you can imagine how incredible it will be at launch when all four engines and both boosters ignite together to lift this 322 feet tall, 5.75 million pound rocket up through the atmosphere and toward deep space. Imagine the thunderous vibration in your chest even as you stand several miles away.

Artist’s concept of an SLS launch
Note: Actually watching an SLS launch from this close is strongly not advised (or permitted). Orion hardware is being tested to withstand sound levels that would turn a person to liquid.

We’ve talked about how it will feel to be there when the rocket launches. Now, let’s talk about how it would feel to BE the rocket, launching.

Envision the power generated at launch as the engines and boosters throttle up to 8.8 million pounds of thrust. The heat is incredible! The vehicle starts to shake. The engine nozzles, as big and solid as they seem, will warp under the pressure of heat when the engines ignite seconds ahead of the boosters. While still on the pad, the boosters are bearing the weight of the entire vehicle even as they fire up for launch – the weight of almost 13 Statues of Liberty resting on an area smaller than an average living room.

Then, you – the rocket – are released to fly, and up you go. More than 5 million pounds of the weight of the rocket pushing down are now counteracted by more than 8 million pounds of thrust pushing from the opposite direction. Remember those 13 Statues of Liberty? Now the bottom of the rocket is feeling the pressure of 29 of them instead!

And now things are heating up on the front end of the rocket as well. Approaching Mach 1, shock waves move over the entire vehicle. Friction from just moving through the air causes the nose of the vehicle to heat. The shock waves coming off the booster nose cones strike the core stage intertank and can raise the temperature to 700 degrees. The foam insulation not only keeps the cryogenic tanks cold, it keeps the heat of ascent from getting into the intertank structure between the hydrogen and oxygen tanks.

Computer model of a shock wave at the front of the SLS vehicle at the time of booster separation during launch.
Computer model of a shock wave at the front of the SLS vehicle at the time of booster separation during launch.

Are you feeling it yet? That’s a lot to handle. These impacts from weight (mass), pressure, temperature and vibration are called “loads.” It’s a key part of the “rocket science” involved in the development of the SLS vehicle.

A load is a pressure acting on an area. Sounds simple, right? There are all kinds of loads acting on SLS, some even before it leaves the launch pad. Tension and compression (pulling and pushing), torque (twisting), thermal (hot and cold), acoustic (vibration), to name a few. There are static (stationary) loads acting on the big pieces of the rocket due to gravity and their own weight. There are loads that have to be considered when hardware is tipped, tilted, rolled, and lifted at the factory. There are “sea loads” that act on the hardware when they ride on the barge up and down the rivers to various test sites and eventually across the Gulf of Mexico and up the Florida coast to Kennedy Space Center for launch. Engineers have to consider every single load, understanding how they will affect the structural integrity of the rocket and how they will couple and act together.

The Pegasus barge that will transport SLS
You’ve probably never thought of “riding on a boat” as rocket science, but SLS has to be designed to handle sea loads as well as space loads.

When SLS is stacked on the mobile launcher at KSC, there are loads acting through the four struts securing the core stage to the boosters and down into the booster aft skirts that have to carry the entire weight of the launch vehicle on the mobile launcher. Then there are roll-out loads when the mobile launcher and crawler take SLS more than 4 miles from the Vehicle Assembly Building to the launch pad. There are many more loads as the vehicle is readied for launch.

How do engineers know the rocket’s ready to handle the loads it has to face to send astronauts into deep space? Step One is good design – developing a rocket robust enough to withstand the strains of launch. However this is difficult as the vehicle needs to be as lightweight as possible. Step Two is digital modeling – before you start building, you run many, many simulations in the computer to a level of detail that would make any Kerbal Space Program fan jealous. Step Three is to do the real thing, but smaller – wind-tunnel models and even scale-model rockets with working propulsion systems provide real-life data. And then comes Step Four – build real hardware, and stress it out. Test articles for the core stage and upper stage elements of the vehicle will be placed in test stands beginning this year and subjected to loads that will mimic the launch experience. Engines and boosters are test-fired to make sure they’re ready to go.

Still want to be the rocket? Stay tuned for more on loads as we do everything possible to shake, rattle, and yes, even roll, the pieces of the rocket, ensuring it’s ready to launch in 2018.


Next Time: No Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Orion, At Your Service (Module)

What do NASA’s Orion spacecraft and nuclear-powered airplanes have in common? Here’s a hint: It’s something they also both have in common with actor Samuel L. Jackson.

The answer, of course, is that they’ve all been to NASA’s Plum Brook Station in Sandusky, Ohio.

The Orion service module test article with a model of SLS
The piece of hardware on the left fits roughly were the NASA logo is on the rocket to the right.

Plum Brook, a branch of NASA’s Glenn Research Center, was originally created to allow the agency to conduct nuclear research, first related to airplanes and then to nuclear rockets. Today, it’s a unique facility that allows testing that replicates extreme conditions encountered in spaceflight – from vacuum and thermal environments found in orbit to launch-like acoustic levels that would turn a human body into a puddle.

On an average day, the Space Power Facility at Plum Brook is engaged in tasks like using a a vacuum chamber made of aluminum equivalent to about one billion soda cans to test large payload fairings for SpaceX rockets. And on special occasions it’s used for more unique purposes, like serving as a set for Marvel’s The Avengers (in case you’ve ever wondered why there was a NASA banner hanging behind Jackson’s Nick Fury in the opening scene).

I had the opportunity to visit Plum Brook last month for the arrival from Europe of a test article of the Orion crew vehicle’s service module.* Orion, of course, is the aforementioned deep-space spacecraft, which will be launched on SLS to enable human missions beyond the moon and eventually to Mars. Orion is designed to meet the robust demands of human space exploration, from providing life support to keep up to six astronauts healthy and safe to withstanding the high temperatures generated by a high-speed entry into Earth’s atmosphere.

In order to do that, Orion has requirements that dwarf those of a mission to low Earth orbit. Even after it separates from SLS, Orion will need more than twice as much propellant as a spacecraft on an orbital mission. It will have to have four times the ability to scrub carbon dioxide from the atmosphere, and will have to carry five times as much oxygen and drinking water.

Infographic of Orion capabilities
Just some of the ways Orion is designed uniquely for a unique purpose.

Which is where the service module comes in. It’s a combination of a propulsion system and a storage unit for all those helpful things like air and water that keep astronauts alive while traveling hundreds of thousands of miles from home. Orion’s service module is provided by the European Space Agency, in a partnership agreement that has its roots in NASA’s cooperation with ESA on the International Space Station. The service module builds on the success of the European Automated Transfer Vehicle, which has carried cargo to the space station since 2008.

Work is well underway on the service module for the first flight of SLS and Orion on Exploration Mission 1, but, in the meantime, the recently arrived test article will be put through a variety of stresses and loads to make sure the design is ready to fly. Being at the event marking the arrival of the test article was a glimpse into the future of international space exploration – an overlapping of different accents and different languages, united in a common message of working together to do things we’ve never before done.

The Red Planet is waiting. And people from around our planet are already working together to get there.

Speakers in the acoustic testing chamber at Plum Brook
The acoustic test chamber at Plum Brook will subject the test article to 163 decibels of sound.

*If you’d like to join Orion and Samuel L. Jackson in having a Plum Brook connection, your chance is coming. Plum Brook Station and Glenn Research Center, in Cleveland, will hold open houses in 2016, on June 11-12 and May 21-22, respectively, in connection with Glenn’s 75th anniversary.

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Help Wanted: Be An Astronaut

Actors playing astronauts walk through smoke
These are actors from a video about the first launch of Orion. The actual roles of “Orion crew members” are yet to be cast.

Many moons ago, an Orion program executive asked on a Twitter chat what advice he would have for the first crew that will fly on the spacecraft the team is building.

The answer could have gone in any number of directions, from how the steering’s going to handle to what to pack for the trip. But what he said was this:

“Hang on! You’re about to make history!”

For me, that response was a good reminder – it’s one thing to remember the historic significance of the first crewed flight of Orion and SLS as a huge stepping stone in human exploration of the solar system, but it’s another thing altogether to appreciate that step as an incredibly unique experience for the individuals involved. When the crew returns to Earth at the end of the mission, they will share stories of what it was like to have the personal experience of looking past the moon and seeing our home planet in the distance beyond.

Others will follow them, and come back with their own incredible stories – living long periods farther from Earth than anyone ever has, voyaging deep into the expanses of space, being the first to interact with raw relics of the formation of our solar system floating in the void. And as those pioneers carry us farther in our journey to Mars, others will remain closer to home, performing revolutionary scientific research aboard the International Space Station.

Not long after that Twitter chat, I was privileged to sit in on a briefing about SLS to a unique audience: NASA’s 2013 class of astronaut candidates. It was interesting to watch them as the presenter talked about the rocket we’re building. At the end of the presentation, they were shown a video – an animation of a crewed launch of SLS and Orion. The video included a scene of a crew walking out to board the vehicle, and, to be honest, I was a little envious watching the future astronauts realize it would be them who would be doing that in real life, seeing them get excited about the possibilities and opportunities that lay before them.

But that moment was also a healthy reminder – we’re building this rocket to carry these people, and others like them. SLS and Orion will open the solar system for exploration by humankind, but will do so by carrying not faceless representatives of our species, but by safely transporting real individuals through the unmatched fires of launch and the unrelenting void of space and the unforgiving heat of entry. It is our job to give them a good ship for the journey.

Spacesuit engineers demonstrate how four crew members would be arranged for launch inside the Orion spacecraft, using a mockup of the vehicle at Johnson Space Center.
Spacesuit engineers demonstrate how four crew members would be arranged for launch inside the Orion spacecraft, using a mockup of the vehicle at Johnson Space Center.

And that focus permeates everything we do. When NASA founded the SLS program, one of our key tenets was safety. Before we built, the vehicle was modeled on computers and in small scale. We test the engines and boosters again and again and again. Flight hardware is preceded by test articles that are subjected to incredible stresses to see how they will withstand the dynamic pressures of launch. Where possible, redundancy is included to add an additional level of safety. Contingencies are identified and preparations are made. Spaceflight is an endeavor that will never be without risk. We carry the responsibility of equipping pioneers to face that risk as safely as possible.

Today, NASA is looking for the next group of men and women that will carry forward our work in space, both aboard our outpost science laboratory in Earth orbit and on the proving ground missions that will prepare for missions to Mars, flying on a new fleet of American spacecraft including not only SLS and Orion but also Commercial Crew vehicles.

If you want to apply to be an astronaut, among the credentials you’ll need are a bachelor’s degree in engineering, biological, physical or computer science or mathematics and at least three years of related professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Visit USAJobs.gov and search for the keyword astronaut to apply online.

And for those who are selected, we’re working hard to build you a great ship. Hang on, you’re about to make history!

Next Time: An Orion Overview

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Movies, Mars Missions and Why Murphy Was An Optimist

Graphic showing a rocket launch and an astronaut walking on Mars

If Murphy’s Law were actually true, things would arguably be much easier.

The old adage that “Anything that can go wrong will go wrong” has a reputation of being the apogee of pessimism, but think about how much simpler it would make things if it were true. Spaceflight is full of unknown possibilities, and if Murphy’s Law were really true, you’d only have to prepare for the worst of them.

It’s true for a college exam and it’s true in life or in engineering – it’s not the hard questions that will get you, it’s the ones you never imagined you’d be asked.

There’s a movie out now that captures the spirit of that. “The Martian” tells the story of Mark Watney, an astronaut on Mars who, to put it lightly, gets the opportunity to learn about what can go wrong in space exploration, and his survival depends on working with the NASA team back on Earth to answer questions none of them had ever imagined.

In many ways, “The Martian” is a spiritual successor to “Apollo 13,” both the 1995 movie and the 1970 NASA mission on which it was based. On that mission, a failure in an Apollo service module put the lives of the crew in jeopardy, and only through quick thinking, hard work and a lot of endurance was the crew able to survive.

Both movies are edge-of-your-seat stories about the risks of spaceflight and the merits of duct tape, but while one is fiction and the other is based on a true story, they both are ultimately, in a very real way, stories about NASA — about who we are, and about how we rise to the challenge of answering those unexpected questions.

The real-life carbon-dioxide scrubber assembly from Apollo 13
A square peg in a round hole — The real-life carbon-dioxide scrubber assembly that helped save Apollo 13.

I’ve talked to engineers who have cited Apollo 13, both the mission and the movie, as something that inspired them to pursue engineering. There’s a scene in the movie where a collection of the items aboard the spacecraft are dumped on a table on Earth, and the engineering team is challenged to use them to figure out how to put a square peg in a round hole. More than one person has told me they saw that scene and said, “THAT’S what I want to do!”

The Apollo 13 mission has been described as being perhaps “NASA’s greatest moment.” I talked once with an astronaut who said this title should really go to a 10-day span in May 1973. When the Skylab space station launched on May 14, its first crew was supposed to follow it on the next day. An anomaly during launch caused the heat shield to be lost and the solar power system to be crippled, endangering the space station. In 10 days, NASA figured out multiple ways to save Skylab, designed and built two different solutions, and was able to launch the first crew on May 25. Apollo 13 was primarily a story of a crew and mission control, but the Skylab rescue was a nationwide effort.

You may never see a movie about the Skylab rescue. The world may pay more attention when lives – real or fictional – are in danger, but answering the unknown is something we do every day. When we do it successfully, it means that we prevent those lives from being endangered in the first place.

It made me happy that one of the first conversations I had with a coworker about “The Martian” wasn’t about what was right or wrong with the movie, but what could have been done differently to make sure the situation it depicts never happened in the first place. On a program developing a new vehicle, our job right now isn’t solving Apollo 13- or The Martian-style problems, it’s preventing them.

Which doesn’t mean we don’t have challenges on the Space Launch System program. We prepare for the worst and we prepare for the best and sometimes we get the unknown. A material doesn’t function in reality the way it does on paper. A proven system behaves differently in a new environment. And when that happens, just like in those movies, we roll up our sleeves and we find an answer to the unexpected question.

And the moments when we do, the moments you never see in movies when we make sure the next Apollo 13 never happens or the next Mark Watney is never stranded on Mars – THOSE are NASA’s greatest moments.

(For more about the Apollo 13 and Skylab rescues, along with other great “NASA Hacks,” check out this feature.)

Next Time: Who’s The Boss?

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

David Hitt works in the strategic communications office of NASA’s Space Launch System Program. He began working in NASA Education at Marshall Space Flight Center in 2002, and is the author of two books on spaceflight history.

 

Mars: Gateway to the Solar System

Graphic of rocket flying with Mars background

The demands of going to Mars are immense.

Meeting that challenge will require delivering our best, and then continuing to do better.

Designed to enable human exploration of deep space, NASA’s Space Launch System will be, from its first launch, the most powerful rocket in the world today. The first SLS to depart Earth will carry about triple the payload of the space shuttle, provide more thrust at launch than the Saturn V, and send Orion further into space than Apollo ever ventured.

But even that power is only a fraction of what is needed for human landings on Mars. To continue the Journey to Mars, we will have to take the most powerful rocket in the world and make it even more powerful.

Engineers prepare a 3-D printed turbopump for a test at NASA’s Marshall Space Flight Center in Huntsville, Alabama
NASA is doing research today on technologies like composite materials and 3-D printing that will be used to make future versions of the rocket more powerful.

Engineers at Marshall’s Space Flight Center, where the program is based, and other engineers across the country, are already in the planning phases for the first major upgrade, which will come in the form of a more powerful upper stage. This will create a version of the rocket that will serve as the workhorse for “Proving Ground” missions that will test out new systems and capabilities in the vicinity of the moon before we heard toward Mars. With the new upper stage, SLS will be able to carry additional payloads to lunar space with Orion, allowing astronauts to make longer stays in deep space.

Then, in order to enable the leap to Mars, SLS will receive new, advanced booster rockets that will make it even more powerful. The SLS Program is already working with industry partners to demonstrate new technologies that will make sure the new boosters are state-of-the-art when they begin flying.

Mars is sometimes discussed as a “horizon goal” in human space exploration. While Mars is a focus of our efforts, it is neither the first step of the journey nor the last. Just as we will develop our capabilities in the Proving Ground near the moon before heading toward Mars, once we have reached the Red Planet, our voyage into deep space will continue.

Space Launch System not only represents a foundation for our first steps on the Red Planet, the robust capability necessary to accomplish that goal will also give us the ability to carry out many other ambitious space missions.

Jupiter hangs in the sky above the surface of a moon
Far beyond Mars, SLS could speed space probes far faster than ever before to the outer solar system.

With the ability to launch far more mass than any rocket currently flying or in development, SLS could be used to help pave the way to Mars with large-scale robotic precursor missions, such as potentially a sample return, that would demonstrate systems needed for human landings.

SLS’s unrivaled ability to speed robotic spacecraft through our solar system offers the potential to revolutionize our scientific expeditions to distant worlds. Reducing the time it takes to reach the outer planets could make it possible to conduct in-depth studies of icy moons that are promising destinations in the search for life.

With payload fairings that make it possible to launch five times more volume than any existing rocket, SLS could be used to launch gigantic space telescopes, which will allow us to peer farther into space, and with greater detail, than ever before, revealing new secrets of our universe.

In addition to the Orion crew vehicle and other large payloads, SLS will be able to carry small, low-cost secondary payload experiments, some not much larger than a lunchbox, providing new opportunities to for research beyond the moon and through the solar system. This will make it possible for groups that otherwise might not be able to afford a dedicated rocket launch to fly innovative ideas that can help pave the way for exploration.

The first launch of the initial configuration of SLS will be just a first step toward these and other opportunities; each upgrade will give us progressively greater ability to explore.

Mars – and the solar system – are waiting.

For more about how NASA is preparing for the Journey to Mars, check out our page, The Real Martians.

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=dOOHJrqIJqY[/embedyt]

 

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!


David Hitt works in the strategic communications office of NASA’s Space Launch System Program. He began working in NASA Education at Marshall Space Flight Center in 2002, and is the author of two books on spaceflight history.

Making History, Again

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=SjjRN6KAoi0[/embedyt]

Ask anybody what an astronaut does, and they’ll talk about going on space missions. And, to be sure, that is part of being an astronaut. A rather cool part of being an astronaut.

But, strictly on time spent, it’s also the smallest major part of the job. Back in the Space Shuttle Program, astronauts would spend years on the job of which only weeks were spent in space. If that sounds like it would be frustrating, you have to remember two things: 1) The going-into-space part is really amazing. 2) The not-going-into-space part is also really amazing.

While they’re not in space, astronauts spend a substantial amount of time training, which can range from simulating spaceflight on the ground to traveling the world meeting scientists behind cutting-edge research. They also get to work closely with the NASA team on a variety of different projects, including the development of future space vehicles and systems.

When space shuttle commander Hoot Gibson was selected as an astronaut in 1978, NASA was still three years away from the shuttle’s first launch. Years before he first flew the shuttle, he got to be involved in its development and see it being built. He had a front-row seat for the genesis of the future of American spaceflight, and got to be part of making it happen.

The work we’re doing today on Space Launch System (SLS) in many ways resembles the space shuttle work that Gibson and his classmates got to witness almost 40 years ago. In some ways, it very strongly resembles it – for example, we’re once again testing RS-25 engines at the same facility they did back then, albeit with numerous upgrades over the years.

I’ve had the opportunity to hear Hoot Gibson talk about his shuttle experiences, and to share about the work we’re doing today. As someone who grew up during the shuttle era and a student of its history, it’s an incredible honor that we get to carry forward that legacy with SLS, and to write the next chapter of this history.

In this video, Gibson looks back to the days of the shuttle and forward to the future of exploration. And as we continue to work toward that future, we hope you’ll join us on the journey.

Next Time: Mars: Gateway to the Solar System

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!


David Hitt works in the strategic communications office of NASA’s Space Launch System Program. He began working in NASA Education at Marshall Space Flight Center in 2002, and is the author of two books on spaceflight history.