Five “Secrets” of Engine 2059

Earlier this month, another successful test firing of a Space Launch System (SLS) RS-25 engine was conducted at Stennis Space Center in Mississippi. Engine testing is a vital part of making sure SLS is ready for its first flight. How do the engines handle the higher thrust level they’ll need to produce for an SLS launch? Is the new engine controller computer ready for the task of a dynamic SLS launch? What happens when if you increase the pressure of the propellant flowing into the engine? SLS will produce more thrust at launch than any rocket NASA’s ever flown, and the power and stresses involved put a lot of demands on the engines. Testing gives us confidence that the upgrades we’re making to the engines have prepared them to meet those demands.

If you read about the test – and you are following us on Twitter, right? – you probably heard that the engine being used in this test was the first “flight” engine, both in the sense that it is an engine that has flown before, and is an engine that is already scheduled for flight on SLS. You may not have known that within the SLS program, each of the RS-25 engines for our first four flights is a distinct individual, with its own designation and history. Here are five other things you may not have known about the engine NASA and RS-25 prime contractor Aerojet Rocketdyne tested this month, engine 2059.

Engine 2059 during testing at Stennis Space Center on March 10
Engine 2059 roars to life during testing at Stennis Space Center.

1. Engine 2059 Is a “Hubble Hugger” – In 2009, the space shuttle made its final servicing mission to the Hubble Space Telescope, STS-125. Spaceflight fans excited by the mission called themselves “Hubble Huggers,” including STS-125 crew member John Grunsfeld, today the head of NASA’s Science Mission Directorate. Along with two other engines, 2059 powered space shuttle Atlantis into orbit for the successful Hubble servicing mission. In addition to its Hubble flight, engine 2059 also made four visits to the International Space Station, including the STS-130 mission that delivered the cupola from which station crew members can observe Earth below them.

Launch of Atlantis on STS-125
The engine farthest to the left in this picture of the launch of the last Hubble servicing mission? That’s 2059. (Click for a larger version.)

2. The Last Shall Be First, and the Second-to-Last Shall Be Second-To-First – The first flight of SLS will include an engine that flew on STS-135, the final flight of the space shuttle, in 2011. So if the first flight of SLS includes an engine that flew on the last flight of shuttle, it only makes sense that on the second flight of SLS, there will be an engine that flew on the second-to-last flight of shuttle, right? Engine 2059 last flew on STS-134, the penultimate shuttle flight, in May 2011, and will next fly on SLS Exploration Mission-2.

View of the test stand during the test of engine 2059 at Stennis Space Center on March 10.
The test of engine 2059 at Stennis Space Center on March 10.

3. Engine 2059 Is Reaching for New Heights – As an engine that flew on a Hubble servicing mission, engine 2059 has already been higher than the average flight of an RS-25. Hubble orbits Earth at an altitude of about 350 miles, more than 100 miles higher than the average orbit of the International Space Station. But on its next flight, 2059 will fly almost three times higher than that – the EM-2 core stage and engines will reach a peak altitude of almost 1,000 miles!

Infographic about engine testing
Click to see larger version.

4. Sometimes the Engine Tests the Test Stand – The test of engine 2059 gave the SLS program valuable information about the engine, but it also provided unique information about the test stand. Because 2059 is a flown engine, we have data about its past testing performance. Prior to the first SLS RS-25 engine test series last year, the A1 test stand at Stennis had gone through modifications. Comparing the data from 2059’s previous testing with the test this month provides calibration data for the test stand.

NASA Social attendees with engine 2059 in the background
Attendees of a NASA Social visiting Stennis Space Center being photobombed by engine 2059.

5. You – Yes, You – Can Meet Awesome SLS Hardware Like Engine 2059 – In 2014, participants in a NASA Social at Stennis Space Center and Michoud Assembly Facility, outside of New Orleans, got to tour the engine facility at Stennis, and had the opportunity to have their picture made with one of the enginesnone other than 2059. NASA Social participants have seen other SLS hardware, toured the booster fabrication facility at Kennedy Space Center in Florida, and watched an RS-25 engine test at Stennis and a solid rocket booster test at Orbital ATK in Utah. Watch for your next opportunity to be part of a NASA Social here.

Watch the test here:
https://www.youtube.com/watch?v=njb9Z2jX2fA[/embedyt]

If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Next Time: We’ve Got Chemistry!

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Making a Lot of Fire in Two “Easy” Steps

On one end of the technology spectrum, you have rocket science, mastering the laws of physics to allow human beings to break the chains of gravity and sail through the void of space.

On the other end, you have the earliest humans, first learning to use the world around them in innovative ways to do things they previously couldn’t.

What do these two extremes have in common? Making fire. Just like the secret to learning to cook food was mastering the creation of flames, creating fire is also the secret to leaving the planet.

We just use a much bigger fire.

Close-up of aft end of SLS during launch
Solid rocket motors and liquid-fuel engines will work together to propel the first SLS into space.

If you’ve watched the first video in our No Small Steps series you’ve learned why going to Mars is a very big challenge, and why meeting that challenge requires a very big rocket. In the second installment we talked about how NASA’s Space Launch System (SLS) builds on the foundation of the Saturn V and the space shuttle, and then uses that foundation to create a rocket that will accomplish things neither of them could.

Now, the third No Small Steps video takes a step further by looking at the basics of the monumental energy that makes the rocket go up. If you’ve been following this Rocketology blog and the No Small Steps videos, you’re aware that the initial configuration of SLS uses two different means of powering itself during launch – solid rocket boosters and liquid-fuel engines.

But why? What’s the difference between the two, and what role does each play during launch? Well, we’re glad you asked, because those are exactly the questions we answer in our latest video.

With more SLS engine and booster tests coming in the next few months, this video is a great way to get “fired up” about our next steps toward launch.

http://youtu.be/zJXQQv9UZNg[/embedyt]
If you do not see the video above, please make sure the URL at the top of the page reads http, not https.


Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

#YearInSpace: Mars, Miles, Months, Mass and Momentum

During his yearlong mission aboard the International Space Station, Scott Kelly traveled over 143 million miles in orbit around Earth.

On average, Mars is 140 million miles away from our planet.

Coincidence? Well, basically.

Scott Kelly with plant-growth experiment
NASA astronaut Scott Kelly took this selfie with the second crop of red romaine lettuce in August 2015. Research into things like replenishable food sources will help prepare the way for Mars. (And the red lettuce even kind of matches the Red Planet!)

There’s nothing average about a trip to Mars; so of course you don’t travel an “average distance” to get there. Launches for robotic missions – the satellites and rovers studying Mars today – are timed around when Earth and Mars are about a third of that distance, which happens every 26 months.

While the shortest distance between two points is a straight line, straight lines are hard to do in interplanetary travel. Instead, Mars missions use momentum from Earth to arc outward from one planet to the other. The Opportunity rover launched when Earth and Mars were the closest they’d been in 60,000 years, and the rover still had to travel 283 million miles to reach the Red Planet.

On the International Space Station, Scott Kelly was traveling at more than 17,000 miles per hour, an ideal speed for orbital research that keeps the station steadily circling Earth every 90 minutes. To break free of orbit and go farther to deep space, spacecraft have to travel at higher speeds. Opportunity, for example, traveled at an average of 60,000 miles per hour on the way to Mars, covering twice the distance Kelly traveled on the station in just over half the time.

Graphic showing Opportunity’s trajectory from Earth to Mars
Although Earth and Mars were relatively close together when Opportunity launched, the rover’s trip out was twice the average distance between the two planets.

The fastest any human being has ever traveled was the crew of Apollo 10, who hit a top speed of almost 25,000 miles per hour returning to Earth in 1969. For astronauts to reach Mars, we need to be able to propel them not only faster than the space station travels, but faster than we’ve ever gone before.

But the real lesson of Kelly’s year in space isn’t the miles, it’s the months. The human body changes in the absence of the effects of gravity. The time Kelly spent in space will reveal a wealth of new data about these changes, ranging from things like how fluid shifts in microgravity affected his vision to the behavioral health impacts of his long duration in the void of space. This information reveals more about what will happen to astronauts traveling to Mars and back, but it also gives us insight into how to equip them for that trip, which will be approximately 30 months in duration round-trip. What sort of equipment will they need to keep them healthy? What accommodations will they require to stay mentally acute? What sort of vehicle do we need to build and equip to send them on their journey?

Months and millions of miles. Momentum and mass. These are some of the most basic challenges of Mars. We will need to build a good ship for our explorers. And we will need the means to lift it from Earth and send it on its way fast enough to reach Mars.

An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans
An engine section weld confidence article for the SLS Core Stage is taken off the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans.

While Scott Kelly has been living in space helping us to learn more about the challenges, we’ve been working on the rocket that will be a foundational part of addressing them. Scott Kelly left Earth last year half a month after the Space Launch System (SLS) Program conducted a first qualification test of one of its solid rocket boosters. Since then, we have conducted tests of the core stage engines. We’ve started welding together fuel tanks for the core stage. We’ve begun assembling the upper stage for the first flight. We’ve been building new test stands, and upgraded a barge to transport rocket hardware. The Orion program has completed the pressure vessel for a spacecraft that will travel around the moon and back. Kennedy Space Center has been upgrading the facilities that will launch SLS and Orion in less than three years.

And that’s just a part of the work that NASA’s done while Kelly was aboard the space station. Our robotic vanguard at Mars discovered evidence of flowing liquid water, and we’ve been testing new technologies to prepare us for the journey.

Down here and up there, it’s been a busy year, and one that has, in so many ways, brought us a year closer to Mars. The #YearInSpace months and millions of miles may be done, but many more Mars milestones are yet to come!


Next Time: Next Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Think You’re Stressed? Try Being A Rocket

You know how big the SLS vehicle will be. We described the tremendous power and thrust of just one of the RS-25 engines after last year’s test firings. You may have witnessed live as we fired one of the massive five-segment solid rocket boosters last March. Through all that, perhaps you can imagine how incredible it will be at launch when all four engines and both boosters ignite together to lift this 322 feet tall, 5.75 million pound rocket up through the atmosphere and toward deep space. Imagine the thunderous vibration in your chest even as you stand several miles away.

Artist’s concept of an SLS launch
Note: Actually watching an SLS launch from this close is strongly not advised (or permitted). Orion hardware is being tested to withstand sound levels that would turn a person to liquid.

We’ve talked about how it will feel to be there when the rocket launches. Now, let’s talk about how it would feel to BE the rocket, launching.

Envision the power generated at launch as the engines and boosters throttle up to 8.8 million pounds of thrust. The heat is incredible! The vehicle starts to shake. The engine nozzles, as big and solid as they seem, will warp under the pressure of heat when the engines ignite seconds ahead of the boosters. While still on the pad, the boosters are bearing the weight of the entire vehicle even as they fire up for launch – the weight of almost 13 Statues of Liberty resting on an area smaller than an average living room.

Then, you – the rocket – are released to fly, and up you go. More than 5 million pounds of the weight of the rocket pushing down are now counteracted by more than 8 million pounds of thrust pushing from the opposite direction. Remember those 13 Statues of Liberty? Now the bottom of the rocket is feeling the pressure of 29 of them instead!

And now things are heating up on the front end of the rocket as well. Approaching Mach 1, shock waves move over the entire vehicle. Friction from just moving through the air causes the nose of the vehicle to heat. The shock waves coming off the booster nose cones strike the core stage intertank and can raise the temperature to 700 degrees. The foam insulation not only keeps the cryogenic tanks cold, it keeps the heat of ascent from getting into the intertank structure between the hydrogen and oxygen tanks.

Computer model of a shock wave at the front of the SLS vehicle at the time of booster separation during launch.
Computer model of a shock wave at the front of the SLS vehicle at the time of booster separation during launch.

Are you feeling it yet? That’s a lot to handle. These impacts from weight (mass), pressure, temperature and vibration are called “loads.” It’s a key part of the “rocket science” involved in the development of the SLS vehicle.

A load is a pressure acting on an area. Sounds simple, right? There are all kinds of loads acting on SLS, some even before it leaves the launch pad. Tension and compression (pulling and pushing), torque (twisting), thermal (hot and cold), acoustic (vibration), to name a few. There are static (stationary) loads acting on the big pieces of the rocket due to gravity and their own weight. There are loads that have to be considered when hardware is tipped, tilted, rolled, and lifted at the factory. There are “sea loads” that act on the hardware when they ride on the barge up and down the rivers to various test sites and eventually across the Gulf of Mexico and up the Florida coast to Kennedy Space Center for launch. Engineers have to consider every single load, understanding how they will affect the structural integrity of the rocket and how they will couple and act together.

The Pegasus barge that will transport SLS
You’ve probably never thought of “riding on a boat” as rocket science, but SLS has to be designed to handle sea loads as well as space loads.

When SLS is stacked on the mobile launcher at KSC, there are loads acting through the four struts securing the core stage to the boosters and down into the booster aft skirts that have to carry the entire weight of the launch vehicle on the mobile launcher. Then there are roll-out loads when the mobile launcher and crawler take SLS more than 4 miles from the Vehicle Assembly Building to the launch pad. There are many more loads as the vehicle is readied for launch.

How do engineers know the rocket’s ready to handle the loads it has to face to send astronauts into deep space? Step One is good design – developing a rocket robust enough to withstand the strains of launch. However this is difficult as the vehicle needs to be as lightweight as possible. Step Two is digital modeling – before you start building, you run many, many simulations in the computer to a level of detail that would make any Kerbal Space Program fan jealous. Step Three is to do the real thing, but smaller – wind-tunnel models and even scale-model rockets with working propulsion systems provide real-life data. And then comes Step Four – build real hardware, and stress it out. Test articles for the core stage and upper stage elements of the vehicle will be placed in test stands beginning this year and subjected to loads that will mimic the launch experience. Engines and boosters are test-fired to make sure they’re ready to go.

Still want to be the rocket? Stay tuned for more on loads as we do everything possible to shake, rattle, and yes, even roll, the pieces of the rocket, ensuring it’s ready to launch in 2018.


Next Time: No Small Steps Episode 3

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

Movies, Mars Missions and Why Murphy Was An Optimist

Graphic showing a rocket launch and an astronaut walking on Mars

If Murphy’s Law were actually true, things would arguably be much easier.

The old adage that “Anything that can go wrong will go wrong” has a reputation of being the apogee of pessimism, but think about how much simpler it would make things if it were true. Spaceflight is full of unknown possibilities, and if Murphy’s Law were really true, you’d only have to prepare for the worst of them.

It’s true for a college exam and it’s true in life or in engineering – it’s not the hard questions that will get you, it’s the ones you never imagined you’d be asked.

There’s a movie out now that captures the spirit of that. “The Martian” tells the story of Mark Watney, an astronaut on Mars who, to put it lightly, gets the opportunity to learn about what can go wrong in space exploration, and his survival depends on working with the NASA team back on Earth to answer questions none of them had ever imagined.

In many ways, “The Martian” is a spiritual successor to “Apollo 13,” both the 1995 movie and the 1970 NASA mission on which it was based. On that mission, a failure in an Apollo service module put the lives of the crew in jeopardy, and only through quick thinking, hard work and a lot of endurance was the crew able to survive.

Both movies are edge-of-your-seat stories about the risks of spaceflight and the merits of duct tape, but while one is fiction and the other is based on a true story, they both are ultimately, in a very real way, stories about NASA — about who we are, and about how we rise to the challenge of answering those unexpected questions.

The real-life carbon-dioxide scrubber assembly from Apollo 13
A square peg in a round hole — The real-life carbon-dioxide scrubber assembly that helped save Apollo 13.

I’ve talked to engineers who have cited Apollo 13, both the mission and the movie, as something that inspired them to pursue engineering. There’s a scene in the movie where a collection of the items aboard the spacecraft are dumped on a table on Earth, and the engineering team is challenged to use them to figure out how to put a square peg in a round hole. More than one person has told me they saw that scene and said, “THAT’S what I want to do!”

The Apollo 13 mission has been described as being perhaps “NASA’s greatest moment.” I talked once with an astronaut who said this title should really go to a 10-day span in May 1973. When the Skylab space station launched on May 14, its first crew was supposed to follow it on the next day. An anomaly during launch caused the heat shield to be lost and the solar power system to be crippled, endangering the space station. In 10 days, NASA figured out multiple ways to save Skylab, designed and built two different solutions, and was able to launch the first crew on May 25. Apollo 13 was primarily a story of a crew and mission control, but the Skylab rescue was a nationwide effort.

You may never see a movie about the Skylab rescue. The world may pay more attention when lives – real or fictional – are in danger, but answering the unknown is something we do every day. When we do it successfully, it means that we prevent those lives from being endangered in the first place.

It made me happy that one of the first conversations I had with a coworker about “The Martian” wasn’t about what was right or wrong with the movie, but what could have been done differently to make sure the situation it depicts never happened in the first place. On a program developing a new vehicle, our job right now isn’t solving Apollo 13- or The Martian-style problems, it’s preventing them.

Which doesn’t mean we don’t have challenges on the Space Launch System program. We prepare for the worst and we prepare for the best and sometimes we get the unknown. A material doesn’t function in reality the way it does on paper. A proven system behaves differently in a new environment. And when that happens, just like in those movies, we roll up our sleeves and we find an answer to the unexpected question.

And the moments when we do, the moments you never see in movies when we make sure the next Apollo 13 never happens or the next Mark Watney is never stranded on Mars – THOSE are NASA’s greatest moments.

(For more about the Apollo 13 and Skylab rescues, along with other great “NASA Hacks,” check out this feature.)

Next Time: Who’s The Boss?

Join in the conversation: Visit our Facebook page to comment on the post about this blog. We’d love to hear your feedback!

David Hitt works in the strategic communications office of NASA’s Space Launch System Program. He began working in NASA Education at Marshall Space Flight Center in 2002, and is the author of two books on spaceflight history.