Perseids Peak: Watch Best Meteor Shower of the Year!

By Emily Clay

The Perseid meteor shower is here! With Comet NEOWISE making its way out of the solar system, it is time for a celestial show caused by a different comet. Perseid meteors, caused by debris left behind by the Comet Swift-Tuttle, began streaking across the skies in late July and will peak in the pre-dawn hours of Aug. 12.

In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image
In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. Image Credit: NASA/Bill Ingalls

The Perseid meteor shower is often considered to be one of the best meteor showers of the year due to its high rates and pleasant late-summer temperatures. This year’s shower, however, has the unfortunate circumstance of the Moon phase—last quarter—impeding the view of the shower peak, reducing the visible meteors from over 60 per hour down to 15-20 per hour. But the Perseids are rich in bright meteors and fireballs, so it will still be worth going out in the early morning to catch some of nature’s fireworks.

WHEN SHOULD I LOOK?

Make plans to stay up late the night of Aug. 11 or wake up early the morning of Aug. 12. The Perseids are best seen between about 2 a.m. your local time and dawn. The Moon rises at around midnight, so its brightness will affect the peak viewing window. However, even though the Moon’s phase and presence will keep the frequency of visible meteors lower, there is still nearly one meteor every two minutes during the peak!

If those hours seem daunting, not to worry! You can go out after dark, around 9 p.m. local time, and see a few Perseids. Just know that you won’t see nearly as many as you would had you gone out during the early morning hours.

How can you see the Perseids if the weather doesn’t cooperate where you are? A live broadcast of the meteor shower from a camera at NASA’s Marshall Space Flight Center in Huntsville, Alabama, (if our weather cooperates!) will be available on the NASA Meteor Watch Facebook starting around 8 p.m. CDT on Aug. 11 and continuing until sunrise on Aug. 12. Meteor videos recorded by the NASA All Sky Fireball Network are also available each morning; to identify Perseids in these videos, look for events labeled “PER.”

WHY ARE THEY CALLED PERSEIDS?

All meteors associated with one particular shower have similar orbits, and they all appear to come from the same place in the sky, called the radiant. Meteor showers take their name from the location of the radiant. The Perseid radiant is in the constellation Perseus. Similarly, the Geminid meteor shower, observed each December, is named for a radiant in the constellation Gemini.

HOW TO OBSERVE PERSEIDS

If it’s not cloudy, pick an observing spot away from bright lights, lay on your back, and look up! You don’t need any special equipment to view the Perseids – just your eyes.  (Note that telescopes or binoculars are not recommended because of their small fields of view.) Meteors can generally be seen all over the sky so don’t worry about looking in any particular direction.

While observing this month, not all of the meteors you’ll see belong to the Perseid meteor shower. Some are sporadic background meteors. And some are from other weaker showers also active right now, including the Alpha Capricornids, the Southern Delta Aquariids, and the Kappa Cygnids. How can you tell if you’ve seen a Perseid? If you see a meteor try to trace it backwards. If you end up in the constellation Perseus, there’s a good chance you’ve seen a Perseid. If finding constellations isn’t your forte, then note that Perseids are some of the fastest meteors you’ll see!

Pro tip:  Remember to let your eyes become adjusted to the dark (it takes about 30 minutes) – you’ll see more meteors that way. Try to stay off of your phone too, as looking at devices with bright screens will negatively affect your night vision and hence reduce the number of meteors you see!

Happy viewing!

See Comet NEOWISE! A Once-in-a-Lifetime Event

For Comet Vocabulary, please read to the end of the post.


For most, early July is when most people living in the United States look to the skies to watch dazzling firework shows. However, this month there is a different kind of show happening in the sky.

Comet Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) was only discovered a few months ago on March 27 by NASA’s NEOWISE telescope and has quickly become a popular solar system visitor. Its popularity is warranted, however, as it is the brightest comet since Comet Hale-Bopp that passed by Earth 23 years ago in 1997.

The graphic shows the comet as seen from Huntsville, Friday, July 17 at 9 PM. Look almost due northwest, 15 degrees above the horizon. The comet will be below the stars in the bowl of the Big Dipper, and about as bright (magnitude 3). Binoculars should give a really spectacular view!
The graphic shows the comet as seen from Huntsville, Friday, July 17 at 9 PM. Look almost due northwest, 15 degrees above the horizon. The comet will be below the stars in the bowl of the Big Dipper, and about as bright (magnitude 3). Binoculars should give a really spectacular view!

Comet nuclei are cosmic snowballs of frozen gases, rock and dust that orbit the sun. They can range in size from a few miles to tens of miles wide, and the nucleus of NEOWISE measures about 3 miles across. When these comets approach the sun, their frozen bodies start to sublimate, and they spew dust and gasses in a tail that can span millions of miles.

Comet NEOWISE made its harrowing close approach to the sun, known as its perihelion, on July 3, and it is now zooming past the Earth on its way back out of the solar system. NEOWISE will make its closest approach (64 million miles) to Earth on July 22, but the best viewing window is happening right now until July 19.

NEOWISE can be seen with the naked eye, but for an even better viewing experience, binoculars or even a telescope is recommended. As for which to choose, binoculars are your current best option. “Definitely use binoculars for now – the tail of NEOWISE is at least 7 degrees long, which is much bigger than the field of view of most telescopes,” said Bill Cooke, lead of NASA’s Meteoroid Environment Office at Marshall Space Flight Center. “Binoculars will allow you to see the whole thing, whereas a telescope only shows a tiny part.”

To see NEOWISE, start looking in the northwestern sky about an hour after sunset. The comet will be below the stars that make up the bowl of the Big Dipper and shining nearly as brightly at a magnitude 3. If you are an early riser, you can still see NEOWISE about an hour before sunrise in the northeastern horizon until the end of the week.

You need a clear view of the horizon to see this comet. Beaches, fields, and areas with higher elevations are all great observation spots. In areas with more light pollution, binoculars may be necessary for viewing. This is definitely a once-in-a-lifetime event, as NEOWISE won’t be visiting again for 6,800 years!

Learn more about comets at NASA’s Solar System Exploration website.

For comet-related, kid-friendly activities, visit NASA Science Space Place.

Top 5 viewing tips for Comet NEOWISEComet Vocabulary

Comet – Made up of ice, dust and gas which form a coma and sometimes a visible tail when it is orbiting close to the sun

Nucleus – The head of the comet, which is made up of ice and frozen gas that vaporizes to form the coma and the tail

Sublimate – The transition of a substance directly from the solid to the gas state, without passing through the liquid state

Perihelion – The point where an object orbiting the sun is closest to the sun

Magnitude – The units used to describe brightness of astronomical objects. The smaller the numerical value, the brighter the object is

Go Outside and See the Geminids!

With the holidays right around the corner, most of us are in gift-giving mode… and one of our favorite gifts every December is the Geminid meteor shower!

This year, the peak is during the overnight hours of December 13 and into the morning of December 14. If you can’t catch the Geminids on Friday night, no worries — viewing should still be good on the night of December 14 into the early morning hours of the 15th.

The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”

Under dark, clear skies, the Geminids can produce up to 120 meteors per hour. But this year, a bright, nearly full moon will hinder observations of the shower. Observers can hope to see up to 30 meteors per hour.

Meteor
A Geminid streaks across the sky in this photo from December 2019. Image Credit: NASA

HOW CAN YOU SEE THE GEMINIDS?

Weather permitting, the Geminids can best be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14. This time is when the Geminid radiant is highest in your night sky. The radiant is the celestial point in the sky from which the paths of meteors appear to originate.

The higher the radiant rises into the sky, the more meteors you are likely to see.

Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You should soon start to see Geminid meteors!

As the night progresses, the Geminid rate will increase. If you see a meteor, try to trace it backwards. If you end up in the constellation Gemini, there is a good chance you’ve seen a Geminid. The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.

Good luck and happy viewing!

About the Upcoming (maybe) Alpha Monocerotid Meteor Shower Outburst…

By: Bill Cooke
Lead, NASA Meteoroid Environment Office


The media is currently broadcasting the prediction of an outburst of the alpha Monocerotid meteor shower on the night of November 21. The researchers making the prediction, Dr. Peter Jenniskens and Esko Lyytinen, have made calculations that indicate that there may be zenithal hourly rates as high as 400 to 1000 meteors per hour around 11:50 PM Eastern Standard Time (10:50 PM Central and 9:50 PM Mountain; you will note that I am not giving a Pacific time – more on that later). These are impressive numbers, generating lots of buzz in the media. I love meteor outbursts and storms, so I was initially quite excited – I mean, what’s there not to like about an impromptu display involving lots of meteors from a yet-to-be discovered comet?

But as the media inquiries increased, I began to wonder if all the attention is justified. Being a meteor shower forecaster, I am all too aware of the fact that such predictions (including mine), while pretty accurate on the timing, often estimate a shower intensity higher (factors of a few) than what actually takes place. So I decided to take a more detailed look, starting with some dumpster diving for old papers about this shower and making a few calculations of my own. That’s when the skepticism kicked in – I now think there is a pretty good chance there may be no outburst at all. And even if there is, it won’t be as impressive as many think. Allow me to share…

This map shows the total number of meteors observers in the United States can expect to see for this year’s alpha Monocerotid meteor shower, provided the rates are similar to the 1995 outburst.
This map shows the total number of meteors observers in the United States can expect to see for this year’s alpha Monocerotid meteor shower, provided the rates are similar to the 1995 outburst.

In Dr. Jenniskens and Lyytinen’s work, the Earth is forced to pass through the center of alpha Monocerotid meteor stream (AMOs for short) during the shower’s 1925 and 1935 outbursts. We have no idea if this actually happened, but it is a reasonable assumption if these outbursts were more intense than the last one in 1995. Based on this, they conclude that the AMOs are produced by a long period comet that takes about 500 years to orbit the Sun. IF this is right, then we should pass very close to the center of the meteor stream this year, missing it by a scant 15,000 miles. That’s just a tad closer than we got back in 1995, when the observed zenithal hourly rate was about 400 per hour. And it’s why the forecast rate is so high – closer means the same intensity or better.

However, the intensity of the outburst is very dependent on the size of the parent comet’s orbit. If it is much smaller, or larger, the distance from the stream center will be bigger, and there will not be any sky show, just the normal AMOs, puttering along with their normal rate of 3 or so meteors per hour. And since we have not yet discovered this mysterious parent comet, who knows how close the estimate of the orbit is to the actual? A good reason to step outside Thursday night, because the cool thing is that if an outburst does occur, we will have a pretty good idea of the orbit of this comet – not from observing the comet with telescopes, but by counting its debris as they burn up in our atmosphere.

The old papers I dug up also proved enlightening. I could find no meteor rate numbers for the 1925 outburst – just that it was short, with a fair number of meteors. The 1935 AMO outburst was observed in 2 places – a meteor observer in Begumpet, India and the commanding officer of a U.S. ship in the Philippines each reported seeing a total of just over 100 meteors in a 40 minute span of time. That’s nice, but it certainly is nowhere close to the spectacular rates produced by the Leonid and Draconid meteor storms of the 1900’s. A moderate outburst, yes, but not a meteor storm. Even fewer were seen in 1985, when one observer reported 36 meteors seen over 16 minutes of time. It is true that the calculated rates were in the hundreds per hour, but what matters to the average person is the total number of meteors they will see. Zenithal hourly rates give the theoretical rates for a perfect observer under perfect skies with the shower radiant straight overhead (something that never happens in reality), and while they may be a good way to scientifically measure meteor shower activity, they are poor indicators of what will actually be seen. The observer reports, however, do tell us what we might expect.

And then we come to 1995, the best-observed AMO outburst. Quite a few observers in Western Europe saw about 100 meteors over an hour’s time, consistent with the observations of the previous AMO outbursts. These data do not indicate that we were closer to the AMO stream center in 1925 and 1935, as Jenniskens and Lyytinen suggest; in fact, it appears that AMO outbursts are fairly constant with regard to numbers, with about 100 meteors seen over the less-than-an-hour duration of the outburst. At face value, this would mean no outburst. However, the numbers seeming to be not strongly dependent on distance is possibly good news; even if the researchers’ distance assumptions are wrong, we still may have a chance of a respectable, albeit short, outburst, provided Earth gets “close enough” to the stream center.

At the beginning of this post, I gave times for the predicted peak in the Eastern, Central, and Mountain time zones, but left out Pacific. That’s because the AMO radiant – the point in the constellation of Monocerotis from which the meteors appear to originate – is below the horizon at the peak time for locations west of Denver. That means people on the Pacific Coast will not see this outburst, even if their skies are clear. So if you live there and want to experience the shower, you need to go quite a bit east. If you do, please don’t blame me if the outburst is a no show; as I said, I am a bit skeptical. For the eastern United States, the radiant is not very high in the sky at the forecast peak time (about 23° in Orlando), which is unfortunate since the observed number of meteors is tied to the radiant altitude. The higher the radiant, the more meteors people see. So my computer savvy colleagues have generated this map, which shows the total numbers of meteors you can expect to see if the outburst is similar to that of 1995. Blue is good, red is worse, white means no meteors at all. The decrease in total expected meteors is pretty obvious as you move west

And of course, there is the weather. Remember, you need clear, dark skies to see meteors, and it looks like Mother Nature is going to be mean, with clouds forecast over much of the part of the U.S. that has a chance of observing the outburst. So, if you are gifted with good seeing, give yourself about 45 minutes to adjust to the dark – go out about 10:35 PM Eastern, 9:35 PM Central, or 8:35 PM Mountain. Lie flat on your back, look straight up, and enjoy looking at the night sky (maybe listen to some appropriate tunes, but don’t look at your cell phone, as the bright screen will ruin your night vision). If Jenniskens and Lyytinen are right, you might see some pieces of a comet that awaits discovery, burning up in the atmosphere 60 miles above your head.

That’s worth a couple of hours, I think. Even if there is no outburst, it doesn’t hurt to get out under the stars for a bit.

Perseids Peak August 11-13

The Perseid meteor shower is here! Perseid meteors, caused by debris left behind by the Comet Swift-Tuttle, began streaking across the skies in late July and will peak on the night of August 12.

The Perseid meteor shower is often considered to be one of the best meteor showers of the year due to its high rates and pleasant late-summer temperatures. This year’s shower, however, has unfortunate circumstance of having a full Moon right at the shower peak, reducing the meteor rates from over 60 per hour down to 15-20 per hour. But the Perseids are rich in bright meteors and fireballs, so it will still be worth going out in the early morning to catch some of nature’s fireworks.

Perseid meteor streaks over sky
A Perseid meteor over Daytona Beach, FL. Perseids are known for being bright and fast, traveling 132,000 mph. Image Credit: NASA/MEO

WHEN SHOULD I LOOK?

Make plans to stay up late or wake up early the nights of August 11 to 12 and August 12 to 13. The Perseids are best seen between about 2 a.m. your local time and dawn. On the night of the 11th, the Moon will set around 3 AM, giving you about an hour of dark sky to catch the shower. However, the rates will be lower than on the peak, so don’t expect more than 20 per hour, even without the Moon. On the night of the peak (August 12-13) you will only have a scant few minutes of dark sky between moon set and twilight – not much time to see Perseids.

If those hours seem daunting, not to worry! You can go out after dark, around 9 p.m. local time, and see Perseids. Just know that you won’t see nearly as many as you would had you gone out during the early morning hours.

How can you see the Perseids if the weather doesn’t cooperate where you are? A live broadcast of the meteor shower from a camera in Huntsville, AL (if our weather cooperates!) will be available on the NASA Meteor Watch Facebook starting around 8 p.m. ET and continuing until the early hours of August 13. Meteor videos recorded by the NASA All Sky Fireball Network are also available each morning; to identify Perseids in these videos, look for events labeled “PER.”

WHY ARE THEY CALLED PERSEIDS?

All meteors associated with one particular shower have similar orbits, and they all appear to come from the same place in the sky, called the radiant. Meteor showers take their name from the location of the radiant. The Perseid radiant is in the constellation Perseus. Similarly, the Geminid meteor shower, observed each December, is named for a radiant in the constellation Gemini.

Perseid meteor shower
Most of the meteors seen in this composite are Perseids. Notice how they all appear to be streaking from the same direction? The Perseids appear to radiate from a point in the constellation Perseus. Image Credit: NASA/MEO

HOW TO OBSERVE PERSEIDS

If it’s not cloudy, pick an observing spot away from bright lights, lay on your back, and look up! You don’t need any special equipment to view the Perseids – just your eyes.  (Note that telescopes or binoculars are not recommended.) Meteors can generally be seen all over the sky so don’t worry about looking in any particular direction.

While observing this month, not all of the meteors you’ll see belong to the Perseid meteor shower. Some are sporadic background meteors. And some are from other weaker showers also active right now, including the Alpha Capricornids, the Southern Delta Aquariids, and the Kappa Cygnids. How can you tell if you’ve seen a Perseid? If you see a meteor try to trace it backwards. If you end up in the constellation Perseus, there’s a good chance you’ve seen a Perseid. If finding constellations isn’t your forte, then note that Perseids are some of the fastest meteors you’ll see!

Pro tip:  Remember to let your eyes become adjusted to the dark (it takes about 30 minutes) – you’ll see more meteors that way. Try to stay off of your phone too, as looking at devices with bright screens will negatively affect your night vision and hence reduce the number of meteors you see!

Happy viewing!

Space Station Sees Meteor over California Coast

The Expedition 59 crew on board the International Space Station captured this image of a meteor at 7:21:23 GMT on May 10, on a night pass over the Pacific Ocean and California coast. (Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center)
The Expedition 59 crew on board the International Space Station captured this image of a meteor at 7:21:23 GMT on May 10, on a night pass over the Pacific Ocean and California coast. (Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center)

Happy Solstice, Skywatchers

It’s the first day of summer here in the Northern Hemisphere, and the first of winter in the Southern Hemisphere. Why the difference? It’s all about Earth’s tilt!

During the solstices, Earth reaches a point where its tilt is at the greatest angle to the plane of its orbit, causing one hemisphere to receive more daylight than the other.
During the solstices, Earth reaches a point where its tilt is at the greatest angle to the plane of its orbit, causing one hemisphere to receive more daylight than the other. (NASA/Genna Duberstein)

Earth’s axis is an imaginary pole going right through the center of Earth from “top” to “bottom.” Earth spins around this pole, making one complete turn each day. That is why we have day and night, and why every part of Earth’s surface gets some of each.

Earth’s axis is always tilted 23.5˚ with respect to the Sun. Today, the north pole is tipped toward the Sun, and the south pole is tipped away from the Sun. The northern summer solstice is an instant in time when the north pole of the Earth points more directly toward the Sun than at any other time of the year.

The solstice—meaning “sun stands still” in Latin—occurs at 10:54 a.m. CDT.

Here Comes the Sun… and Moon!

Happy equinox, Earthlings! March 20 marks the spring equinox, one of two seasonal markers in Earth’s year-long orbit when the Sun appears to shine directly over the equator, and daytime and nighttime are nearly equal lengths–12 hours–everywhere on the planet.

During the equinoxes, both hemispheres receive equal amounts of daylight. (Image not to scale.)
During the equinoxes, both hemispheres receive equal amounts of daylight. (Image not to scale.) (NASA/GSFC/Genna Duberstein)

It’s the start of astronomical spring in the Northern Hemisphere, meaning more sunlight and longer days. From here until the beginning of fall, daytime will be longer than nighttime as the Sun travels a longer, higher arc across the sky each day, reaching a peak at the start of summer. It’s just the opposite in the Southern Hemisphere, where March 20 marks the fall equinox.

What’s more? The first full Moon of spring will rise tonight, lighting the skies on the equinox. Usually, a full Moon arrives a few days to weeks before or after the equinox. It’s close, but not a perfect match. Tonight’s full Moon, however, reaches maximum illumination less than four hours after the equinox. There hasn’t been a comparable coincidence since the spring equinox in 2000.

When the Moon, on its orbit around Earth, reaches the point farthest from the Sun, we see a full Moon.
When the Moon, on its orbit around Earth, reaches the point farthest from the Sun, we see a full Moon. (NASA/GSFC/Genna Duberstein)

And because the Moon is near perigee, it qualifies as a supermoon–the third and final of 2019. It’s not a big supermoon, so you won’t really be able to see the difference between this full Moon and any other one with your eyes. But keep an keep an eye on the Moon as it rises and creeps above the eastern skyline. A low-hanging Moon can appear strangely inflated. This is the Moon illusion at work.

Super or seemingly not, it’s a rare celestial coincidence to usher in springtime.

Ask an Astronomer: What’s a Supermoon?

“The second supermoon of 2019 happened Feb. 19. The third of 2019 will happen March 19. But what’s a supermoon? We asked NASA astronomer Mitzi Adams what’s really going on here. Here’s her answer!”

Like the orbits of all bodies in the solar system, the Moon’s orbit around Earth is not circular, it has an oval or elliptical shape, with Earth slightly offset from the center. As a result, there are two distance extremes of each orbit: closest approach, known as perigee, and the farthest, or apogee. When the Moon is at closest approach and within a day or so of being full, it is called a supermoon because the Moon will be at its brightest and largest.

For the supermoon on Feb.19, the Moon will be full only six hours after it reaches the perigee distance of its orbit, making it the brightest and largest full Moon of the year. A supermoon also occurred in January with a slightly more distant perigee, a mere 362 miles (583 kilometers) farther away, but 14 hours after the full Moon. However, January’s supermoon included a total lunar eclipse seen in all of North and South America. The third and last supermoon of the year will happen March 19, when the perigee distance will be reached a day and five hours before the full Moon (see the table below for details).

Date Perigee Distance Time Before or After Full Moon
Jan. 21 222,043 miles (357,344 km) 15 hours after
Feb. 19 221,681 miles (356,761 km) 6 hours before
March 19 223,308 miles (359,380 km) 1 day, 5 hours before
A total lunar eclipse accompanied the first in a trilogy of supermoons in 2019.
A total lunar eclipse accompanied the first in a trilogy of supermoons in 2019. Credit: NASA/MSFC/Joe Matus

To watch tonight’s supermoon, or any full Moon, simply look for the Moon to rise in the east as the Sun sets in the west. The Moon will look extremely large when it rises and sets. This “Moon illusion” happens when the Moon is close to the horizon and there are objects within our line of sight such as trees or buildings. Because these relatively close objects are in front of the Moon, our brain is tricked into thinking the Moon is much closer to the objects that are in our line of sight. At Moon rise or set, it only appears larger than when it is directly overhead because there are no nearby objects with which to compare it. You can check this. When the Moon rises, hold a coin at arm’s length so that the coin covers the Moon. Repeat this throughout the evening and you will see that the Moon’s size does not change.

As it rises on Feb. 19, the Moon will be in the constellation of Leo. However, since the Moon is so bright, you may have trouble seeing the bright star Regulus, which is at the end of the “backwards question mark” that makes Leo easy to spot.

Regulus
Credit: Stellarium

Looking more or less directly overhead, you could see the famous constellation Orion the Hunter with bright stars Betelgeuse, a reddish star, and Rigel, a bluish star. With a telescope or binoculars, you might be able to pick out the Orion nebula just below the belt stars of Orion, Alnitak, Alnilam, and Mintaka.

Great Nebula in Orion
Credit: Stellarium

To the west of Orion you should be able to spot reddish Mars.

Mars
Credit: Stellarium

As we observe this supermoon, keep in mind that 2019 marks the 50th anniversary of a great technological feat ­­– humans travelled to the Moon, walked on its surface and returned safely to Earth. Twelve people walked on the Moon. Neil Armstrong and Buzz Aldrin were the first two, but let us not forget the other ten: Alan Bean, Charles “Pete” Conrad, Edgar D. Mitchell, Alan Shepard, Dave Scott, James Irwin, John Young, Charles Duke, Eugene “Gene” Cernan and Harrison Schmitt. These men, along with the command module pilots Michael Collins, Dick Gordon, Stu Roosa, Al Worden, Ken Mattingly, Ron Evans and the multitudes of support staff back on Earth, fulfilled a dream of exploring our nearest neighbor in space. As NASA and its commercial and international partners plan to return the Moon over the next decade with a long-term continued presence, the list of Moon walkers will surely include women, as well.

A good resource for more information on supermoons may be found here: https://solarsystem.nasa.gov/moons/earths-moon/what-is-a-supermoon/.

Constellation screenshots are from Stellarium, a planetarium software package that is accompanied by a GNU General Public License

Mitzi Adams is a solar scientist in the Heliophysics and Planetary Science Branch at NASA’s Marshall Space Flight Center.

Fireball Leaves Persistent Train over Western Skies

Well over 100 people in California, Nevada, Arizona and Oregon observed a fireball at 5:35 p.m. PST Dec. 19. This event was unusual not for the brightness of the fireball—similar to that of a crescent Moon—but for the persistent train left behind after the object ablated. This persistent train lasted for minutes (compared to the one second duration of the fireball) and was caused by sunlight reflecting off dust particles left behind by the meteoroid as it broke apart in Earth’s atmosphere. Upper atmosphere winds distorted the train over time, giving it a curvy, “corkscrew” appearance.

An analysis of the eyewitness accounts indicates that the meteor first became visible at an altitude of 48 miles over the Pacific Ocean some 50 miles west of the entrance to San Francisco Bay. Moving west of south at 63,000 miles per hour, it managed to survive only a second or so before ablating and breaking apart at an altitude of 34 miles above the ocean.

“Ocean track” showing the path of the fireball.
“Ocean track” showing the path of the fireball.

For videos and images of this event and the persistent train, visit the American Meteor Society website.