Longest Partial Lunar Eclipse in Centuries Coming as ‘Almost’ Total Lunar Eclipse

We have a rare opportunity to witness the longest partial lunar eclipse in nearly 600 years. If the weather permits, it will grace our sky on the night of Nov. 18 and early in the morning Nov. 19 across all of the United States.

A lunar eclipse happens when the Sun, Earth, and Full Moon form a near-perfect lineup in space. A partial lunar eclipse occurs when only a portion of the Moon passes through the Earth’s darkest shadow. During this type of eclipse, a part of the Moon will darken to a dim orange or red as it moves through the Earth’s shadow.

Partial lunar eclipse image
When only a part of the moon enters Earth’s shadow, the event is called a partial lunar eclipse. Credit: Brad Riza

The upcoming eclipse will be visible throughout much of the globe where the Moon appears above the horizon during the eclipse, including North and South America, Eastern Asia, Australia, and the Pacific Region. North America will have the best location to see the entirety of the eclipse.

The partial eclipse will begin a little after 1:00 a.m. CST on Nov 19 (11:00 pm PST on Nov 18.), reaching its maximum at 3:00 a.m. CST. Depending on your local time zone, it’ll happen earlier or later in the evening for you. It will last 3 hours and 28 minutes, making it the longest partial eclipse of this century and the longest in 580 years.

This is a remarkably deep partial eclipse as up to 97% of the Moon’s diameter will be covered by Earth’s darkest shadow. Only a thin slice of the Moon will be exposed directly to the Sun at maximum eclipse. Expect to see the rest of the Moon take on the orange-reddish colors, appearing as an “almost” total lunar eclipse.

Total Lunar Eclipse
A telescopic visualization of the 2021 total lunar eclipse.
Credit: NASA’s Scientific Visualization Studio

You won’t need any special glasses to see the partial lunar eclipse, unlike when viewing a solar eclipse. Just wake up, get out of the bed, and go outside to see the last lunar eclipse of 2021!

Learn more about eclipses here and enjoy this spectacle as you watch the skies!

by Lance D. Davis

International Observe the Moon Night 2021

Everyone, everywhere, every year is invited to celebrate with fellow Moon enthusiasts around our planet for International Observe the Moon Night – a worldwide public event encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery.

Join NASA’s Marshall Space Flight Center on Oct. 16, 2021, for the Virtual Observation Party at 6:00 p.m. CDT via the Facebook event page.

observe the moon night
Image Credit: NASA/Vi Nguyen

This virtual event is brought to you by the Planetary Missions Program Office at Marshall and the U.S. Space & Rocket Center. Additionally, it will include a planetarium show and interviews with planetary and citizen scientists. There will also be an interview about the Artemis missions. So, don’t miss out on this fun, informative program!

It’s a great time to celebrate the Moon with people all over Earth as excitement grows about NASA returning to our nearest celestial neighbor with the Artemis missions. Artemis will land the first woman and first person of color on the Moon, using innovative technologies to explore areas of the lunar surface that have never been discovered before.

Since 2010, the celebration has occurred annually in September or October when the Moon is around first quarter – a great phase for excellent viewing opportunities.

Whether it’s outdoors, at home, online, or wherever you may be, you are encouraged to be a part of International Observe the Moon Night. Please remember to follow your local health and safety guidelines.

Learn more and find other events here. Enjoy the celebration!

by Lance D. Davis

How many Perseids will I see in 2021?

By Bill Cooke, NASA Meteoroid Environments Office

Many Perseid-related news stories and social media posts state that the maximum rate is about 100 meteors per hour, which is a lot. So, folks get excited and go out on the peak night, braving mosquitos and other nightly hazards. But they are often disappointed; we routinely hear, “I went out and only saw a few meteors. Not even 20, much less 100!” And they would be right. The problem is that the 100 per hour is a theoretical number used by meteor scientists and does not convey what people are actually going to see.

In the 1980’s, meteor researchers were searching for a way to compare the meteor shower rates observed by various individuals and groups across the globe. People were reporting the rates, but the differences in sky conditions, radiant altitude and observer eyesight made getting a comprehensive view of shower activity difficult.

So, the meteor researchers put their heads together and came up with the concept of a ZHR, or Zenithal Hourly Rate. The ZHR is what you get after you correct the observed rates for the sky conditions, the altitude of the radiant above the horizon and observer biases. In other words, it is basically what a perfect observer would see under perfect skies with the meteor shower radiant straight overhead – which never happens!

The often-quoted ZHRs overestimate the meteor rates people actually see – sometimes by a lot. Fortunately, we can take the ZHR and invert things to get the hourly rates for certain locations and circumstances – it’s only math, after all. We have done this for select locations in the United States, producing the following maps.

These maps show the hourly rates that can be expected on the night of the Perseid shower’s peak, provided there are no clouds in the sky. (It’s hard to account for partial cloud cover.)

These rates assume you are out in the country, where lots of stars and the Milky Way are visible and no clouds, of course:

Perseids in CountrySo, instead of 100 Perseids per hour, people in the U.S. can reasonably expect to see around 40-ish Perseids in the hour just before dawn on the peak nights. That’s about one every couple of minutes – not bad. However, we are assuming you are out in the country, well away from cities and suburbs.

What rates can you expect if you want to do your Perseid watching from the neighborhood? We also computed that:

Perseids in SuburbsThe brighter skies of the suburbs greatly cut down the rates. We have gone from a Perseid every couple of minutes to one every 6-7 minutes – a factor of three reduction. This explains the great disappointment expressed by many casual Perseid watchers; they go outside, expecting to see at least a meteor a minute and end up with 10 or less in an hour. The brightness of your sky is everything in meteor observing – you have to get away from the lights!

But what about those in cities? The rates are close to zero:

Perseids in CityUgh! City dwellers might see a Perseid or two in an hour. Not very inspiring. Perhaps the only good news is that, if someone in a city sees a Perseid, it has to be really, really bright and spectacular.

Want to see Perseids? Then head out into the dark – it’s worth it!

Check out our previous blog post, The Perseids are on the Rise, for more information on the Perseids and tips on how to observe them.

The Perseids are on the Rise!

It’s time again for one of the biggest meteor showers of the year! The Perseids are already showing up in our night skies—and when they peak in mid-August, it’s likely to be one of our most impressive skywatching opportunities for a while.

Perseid Meteor image
In this 30 second exposure taken with a circular fish-eye lens, a meteor streaks across the sky during the annual Perseid meteor shower on Friday, Aug. 12, 2016 in Spruce Knob, West Virginia. Photo Credit: (NASA/Bill Ingalls)

Our meteor-tracking cameras spotted their first Perseid on July 26, but your best chance to see them will start the night of Aug. 11. With the crescent moon setting early, the skies will be dark for the peak viewing hours of midnight (local time) to dawn on Aug. 12.

Perseid activity
This chart shows expected levels of Perseid activity for July and August 2021, relative to the peak on Aug. 11-13, ignoring the effects of the Sun, Moon, and clouds. All times are in UTC. Credits: (NASA/MEO/Bill Cooke)

If you’re in the Northern Hemisphere, and far away from light pollution, you might spot more than 40 Perseids an hour! (If you’re in a city, you may only see a few every hour; skywatchers in the Southern Hemisphere will also see fewer Perseids, with none visible below about 30 degrees south latitude.) The night of Aug. 12-13 will be another great opportunity to see the Perseids: with a full Moon (and lower meteor activity) during the Perseids’ peak in 2022 and a waning crescent high in the sky for 2023, this might be your best chance to do some summer skywatching for a few years.

Find somewhere comfortable, avoiding bright lights as much as possible (yes, including your phone), and give your eyes some time to adjust to the dark—up to half an hour if you can. The Perseids will appear as quick, small streaks of light: they get their name because they look like they’re coming from the direction of the constellation Perseus (near Aries and Taurus in the night sky), but Perseids in that area can be hard to spot from the perspective of Earth. So just look up and enjoy the show!

If you can’t see the Perseids where you live, join NASA to watch them on social media! Tune in overnight Aug. 11-12 (10 PM–5 AM CDT; 3–10 AM UTC) on Facebook, Twitter and YouTube to look for meteors with space fans from around the world. If skies are cloudy the night of Aug. 11, we’ll try again the same time on Aug. 12-13. Our livestream is hosted by the Meteoroid Environment Office at NASA’s Marshall Space Flight Center, which tracks meteors, fireballs, and other uncommon sights in the night sky to inform the public and help keep our astronauts and spacecraft safe.

Where do the Perseids *actually* come from?

The Perseids are fragments of the comet Swift-Tuttle, which orbits between the Sun and beyond the orbit of Pluto once every 133 years. Every year, the Earth passes near the path of the comet, and the debris left behind by Swift-Tuttle shows up as meteors in our sky. (Don’t worry, there’s no chance that we’ll run into the actual comet anytime soon.)

Where can I go to learn more?

We’ve got some great space-rock lessons for students, starting with the biggest question: what’s the difference between an asteroid and a meteor? Our NASA Space Place site also has a kid-friendly introduction to meteor showers in general. If you’re looking for something a little more hands-on, try this asteroid-building classroom activity—or, for an older audience, learn how to describe rocks like a NASA scientist.

And, if you want to know what else is in the night sky this month, check out the video below from Jet Propulsion Laboratory’s monthly “What’s Up” video series:

Happy skywatching!

by Brice Russ

See the Strawberry Moon – 2021’s Last Supermoon!

Our planet’s natural satellite – better known as the Moon – will appear opposite the Sun and fully illuminated on June 24, 2021, at 18:40 UTC, which is 1:40 p.m. CDT (UTC-5). This full Moon is quite special for two reasons: it’s a Strawberry Moon and the last supermoon of the year!

The Strawberry Moon marks the last full Moon of spring or the first full Moon of summer. Towards the end of June, the Moon usually sits in a lower position in the sky and shines through more of our atmosphere. Because of this, our Moon can sometimes give off a pinkish hue.

supermoon
A supermoon rises behind the U.S. Capitol, Monday, March 9, 2020, in Washington. Credits: NASA/Joel Kowsky

Surprisingly, the name likely has more to do with the time of the year it occurs than its unusual pink shade. Some Native American tribes referred to this full moon as the Strawberry Moon because it signaled a time for gathering ripening strawberries and other fruits.

A supermoon occurs when a full Moon coincides with the Moon’s closet approach to Earth in its elliptical orbit, a point known as perigee. During every 27-day orbit around Earth, the Moon reaches both its perigee, about 226,000 miles from Earth, and its farthest point, or apogee, about 251,000 miles from Earth.

Although supermoon is not an official astronomical term, it’s typically used to describe a full Moon that comes within at least 90% of perigee. In this phase, the Moon appears larger and brighter than usual. A new Moon can also be a supermoon. However, we typically do not see a new Moon since it is between Earth and the Sun, and therefore not illuminated.

If you’re in the daylight at the time of the Super Strawberry Moon, look for a better view during its moonrise, which is about 20 minutes after sunset, local time.

The Super Strawberry Moon will be the last of four supermoons for 2021. Supermoons only happen three to four times a year, and always appear consecutively. The last three supermoons occurred on May 26, April 27, and March 28.

Skywatchers, please enjoy the sunset in the west, and if you look toward the east, you may notice the subtle pink hue of our Super Strawberry Moon!

by Lance D. Davis

Flights are Complete! Mission Success!

After two days of experimenting in weightlessness, a team of researchers from NASA’s Marshall Space Flight Center have their feet firmly planted on the ground.

The team spent April 28 and 29 on parabolic flights with ZERO-G in Fort Lauderdale, Florida. The flight — which achieves various levels of microgravity by performing maneuvers known as parabolas — provided the team with an opportunity to study the formation of potentially destructive amyloid fibrils, or protein clusters, like those found in the brain tissue of patients battling neurodegenerative diseases. The experiment, called the ring-sheared drop, was developed by Marshall and Rensselaer Polytechnic Institute of Troy, New York.

Marshall materials science engineer, Ellen Rabenberg, has supported the project for nearly five years. After two flights on ZERO-G’s modified Boeing 727 — G Force One — in 2016 and 2020, she supported the payload from the ground this year. As ground support, she was responsible for preparing and installing the equipment for flight.

parabolic flight on Flight Aware's live map
Marshall’s ground support team tracked the parabolic flight on Flight Aware’s live map while G Force One performed 30 parabolas. (Flight Aware)

To track the flight in real time, Rabenberg followed the live updates on Flight Aware. Over the course of approximately two hours each day, she monitored the map as G Force One completed 30 parabolas.

Now, Rabenberg and her colleagues will analyze the data gathered in flight and determine next steps for their payload.

Parabolic Pre-flight Checklist

How do you prepare for weightlessness? A team of researchers at NASA’s Marshall Space Flight Center has been doing so in preparation of their April 28 and 29 parabolic flights with ZERO-G in Fort Lauderdale, Florida.

Marshall's parabolic flight crew
The Marshall team exits the G Force One after the first day of parabolic flights. (NASA)
So what is on their parabolic pre-flight checklist?

An easily digestible breakfast
The flight team is served a doctor-recommended breakfast of bagels, fruit, and juice — all of which digest quickly and easily to provide fuel for their bodies as they experience periods of variable gravity.

Proper attire
Fort Lauderdale is a subtropical climate with warm and humid conditions in the spring. Participants wear light, comfortable clothing and closed toed shoes for movement in the hangar, on the ramp, and on the aircraft. Each flyer wears a ZERO-G flight suit, which enables ease of movement in air.

A COVID-19 test
All non-vaccinated participants are tested for COVID-19 daily to ensure safety of all parties.

Identification
Just like a typical commercial flight, each individual must complete a TSA check before boarding the aircraft. They must present a valid driver’s license, passport, or other TSA-approved identification.

Once all the pre-flight boxes are checked, the team will board a modified Boeing 727 — named G Force One — to execute their experiment in a weightless environment.

Marshall's flight team completes a TSA check before boarding G Force One.
Marshall’s flight team completes a TSA check before boarding G Force One. (NASA)

While in the air, the team will test an experiment known as the Ring-Sheared Drop. Developed by Marshall and Rensselaer Polytechnic Institute of Troy, New York, the experiment will study the formation of potentially destructive amyloid fibrils, or protein clusters, like those found in the brain tissue of patients battling neurodegenerative diseases — such as Alzheimer’s and Parkinson’s.

To track the flight path as it performs parabolas, check out Flight Aware.

For more updates on the flight, the team, and the experiment, continue to follow Watch the Skies blog in the coming week.

Ring-Sheared Drop Team Prepares for Zero-G Flight 

A team of researchers from NASA’s Marshall Space Flight Center is preparing to take flight and evade gravity in pursuit of science.

Team members are traveling to Fort Lauderdale, Florida, to test an experiment known as the Ring-Sheared Drop. Developed by Marshall and Rensselaer Polytechnic Institute of Troy, New York, the experiment will study the formation of potentially destructive amyloid fibrils, or protein clusters, like those found in the brain tissue of patients battling neurodegenerative diseases — such as Alzheimer’s and Parkinson’s.

The Ring-Sheared Drop team boards G Force One
The Ring-Sheared Drop team boards G Force One in Fort Lauderdale, Florida with their equipment. (NASA)

In Earth-based experiments, researchers determined that amyloid fibrils may be created by shear flow, or the difference in flow velocity between adjacent layers of a liquid. In the case of ground experiments, that formation is affected by the presence of container walls and by convection, or the circular motion that occurs when warmer liquid rises while cooler liquid descends.

The goal now is to conduct experiments in microgravity — in a containerless reactor — where the liquid specimens form spherical drops, containing themselves via surface tension. Researchers will “pin” a droplet of liquid between two rings and cultivate amyloid fibrils for study.

The experiment was initially launched to the International Space Station in 2019. However, when the experiment failed, efforts began on Earth to improve the testing apparatus for future testing. Now, before the equipment is ready for another trip to the space station, the team will “practice” pinning liquid drops on a parabolic flight.

The research team installs their experimental hardware on G Force One
The research team installs their experimental hardware on G Force One in preparation for April 28, 29 parabolic flights. (NASA)

How exactly is weightlessness reached? A modified Boeing 727 — named G-Force One — achieves periods of variable gravity through a series of maneuvers called parabolas. The team will be able to interact with their hardware in zero gravity for 22 seconds at a time.

NASA’s Flight Opportunities program, within the Space Technology Mission Directorate, makes these experiment flights possible by facilitating rapid demonstration of promising technologies for space exploration, discovery, and results benefit life on Earth.

The program matures capabilities needed for NASA missions and commercial applications while strategically investing in the growth of the U.S. commercial spaceflight industry.

The Ring-Sheared Drop team is scheduled to fly with their hardware April 28 and 29 on a parabolic flight managed by Zero G of Fort Lauderdale, Florida.

Continue to follow NASA’s Watch the Skies blog in the coming weeks for the latest updates on the team, the parabolic flight, and the results of the Ring-Sheared Drop experiment.

March Equinox Brings 2 Seasons: Spring, Autumn

The March equinox – also called the vernal equinox – is the beginning of the spring season in the Northern Hemisphere and autumn season in the Southern Hemisphere. It arrives on March 20, 2021, at 09:37 UTC (Coordinated Universal Time) or 4:37 a.m. CDT (Central Daylight Time).

illustration of the March (spring) and September (fall or autumn) equinoxes
An illustration of the March (spring) and September (fall or autumn) equinoxes. During the equinoxes, both hemispheres receive equal amounts of daylight. Credit: NASA/JPL-Caltech

During this equinox, the Sun will shine directly on the equator with nearly equal amounts of day and night, about 12 hours. Throughout the world, the Northern and Southern hemispheres will get equal amounts of daylight.

Click to view larger. Credit: NASA/Space Place

The equinoxes and solstices are caused by Earth’s tilt on its axis and ceaseless motion in orbit. Think of an equinox as happening on the imaginary dome of our sky, or as an event that happens in Earth’s orbit around the Sun.

In the Northern Hemisphere, the March equinox will bring us earlier sunrises, later sunsets, softer winds, and budding plants. With the opposite season, south of the equator, there will be later sunrises, earlier sunsets, chillier winds, and dry, falling leaves.

If you’re in the Northern Hemisphere, start watching the Sun as it sets just a bit farther north on the horizon each evening until the summer solstice. Also, enjoy the warmer weather and extended daylight!

Sky Watching Highlights for February 2021

Do you want to see some sky watching highlights in February 2021? Find Mars all month after sunset, especially on the night of Feb. 18 for NASA’s planned rover landing. Then, watch the Moon glide across the Winter Circle before it pays a visit to the bright stars of the constellation Gemini. Check out the video below produced by NASA’s Jet Propulsion Laboratory to learn more!