Fireball Leaves Persistent Train over Western Skies

Well over 100 people in California, Nevada, Arizona and Oregon observed a fireball at 5:35 p.m. PST Dec. 19. This event was unusual not for the brightness of the fireball—similar to that of a crescent Moon—but for the persistent train left behind after the object ablated. This persistent train lasted for minutes (compared to the one second duration of the fireball) and was caused by sunlight reflecting off dust particles left behind by the meteoroid as it broke apart in Earth’s atmosphere. Upper atmosphere winds distorted the train over time, giving it a curvy, “corkscrew” appearance.

An analysis of the eyewitness accounts indicates that the meteor first became visible at an altitude of 48 miles over the Pacific Ocean some 50 miles west of the entrance to San Francisco Bay. Moving west of south at 63,000 miles per hour, it managed to survive only a second or so before ablating and breaking apart at an altitude of 34 miles above the ocean.

“Ocean track” showing the path of the fireball.
“Ocean track” showing the path of the fireball.

For videos and images of this event and the persistent train, visit the American Meteor Society website.

Bright Fireball Spotted Over Michigan

A bright fireball lit up skies over Michigan at 8:08 p.m. EST on Jan. 16, an event that was witnessed and reported by hundreds of observers, many who captured video of the bright flash.

Based on the latest data, the extremely bright streak of light in the sky was caused by a six-foot-wide space rock — a small asteroid. It entered Earth’s atmosphere somewhere over southeast Michigan at an estimated 36,000 mph and exploded in the sky with the force of about 10 tons of TNT. The blast wave felt at ground level was equivalent to a 2.0 magnitude earthquake.

The fireball was so bright that it was seen through clouds by our meteor camera located at Oberlin college in Ohio, about 120 miles away.

Events this size aren’t much of a concern. For comparison, the blast caused by an asteroid estimated to be around 65 feet across entering over Chelyabinsk, Russia, was equivalent to an explosion of about 500,000 tons of TNT and shattered windows in six towns and cities in 2013. Meteorites produced by fireballs like this have been known to damage house roofs and cars, but there has never been an instance of someone being killed by a falling meteorite in recorded history.

The Earth intercepts around 100 tons of meteoritic material each day, the vast majority are tiny particles a millimeter in diameter or smaller. These particles produce meteors are that are too faint to be seen in the daylight and often go unnoticed at night. Events like the one over Michigan are caused by a much rarer, meter-sized object. About 10 of these are seen over North America per year, and they often produce meteorites.

There are more than 400 eyewitness reports of the Jan. 16 meteor, primarily coming from Michigan. Reports also came from people in nearby states and Ontario, Canada, according to the American Meteor Society. Based on these accounts, we know that the fireball started about 60 miles above Highway 23 north of Brighton and travelled a little north of west towards Howell, breaking apart at an altitude of 15 miles. Doppler weather radar picked up the fragments as they fell through the lower parts of the atmosphere, landing in the fields between the township of Hamburg and Lakeland. One of the unusual things about this meteor is that it followed a nearly straight-down trajectory, with the entry angle being just 21 degrees off vertical. Normally, meteors follow a much more shallow trajectory and have a longer ground track as a result.

Shows the trajectory of the meteor.
This image shows the trajectory of the meteor as determined by the eyewitness accounts posted on the American Meteor Society Website. It is likely that there are meteorites on the ground near this region. (American Meteor Society)

NASA’s Short-term Prediction Research and Transition Center reported that a space-based lightning detector called the Geostationary Lightning Mapper — “GLM” for short — observed the bright meteor from its location approximately 22,300 miles above Earth. The SPoRT team helps organizations like the National Weather Service use unique Earth observations to improve short-term forecasts.

GLM is an instrument on NOAA’s GOES-16 spacecraft, one of the nation’s most advanced geostationary weather satellites. Geostationary satellites circle Earth at the same speed our planet is turning, which lets them stay in a fixed position in the sky. In fact, GOES is short for Geostationary Operational Environmental Satellite. GLM detected the bright light from the fireball and located its exact position within minutes. The timely data quickly backed-up eyewitness reports, seismic data, Doppler radar, and infrasound detections of this event.

Data from NOAA's GOES-16 space-based weather satellite
Data from NOAA’s GOES-16 space-based weather satellite detected a bright flash of light over southeast Michigan around the time a meteor entered Earth’s atmosphere. (NASA/SPoRT)

Much like the nation’s weather satellites help us make decisions that protect people and property on Earth, NASA’s Meteoroid Environment Office watches the skies to understand the meteoroid environment and the risks it poses to astronauts and spacecraft, which do not have the protection of Earth’s atmosphere. We also keep an eye out for bright meteors, so that we can help people understand that “bright light in the night sky.”

Fireball spotted northwest of Chicago, February 6, 1:25 AM CST

There was a very bright green fireball seen by hundreds of eyewitnesses surrounding Lake Michigan early this morning at 1:25:13 AM Central Time (February 6, 2017). The reports from these individuals and the video information from dash cameras and other cameras in the region indicate that the meteor originated 62 miles above West Bend, Wisconsin and moved northeast at about 38,000 miles per hour. It disrupted about 21 miles above Lake Michigan, approximately 9 miles east of the town of Newton. The explosive force of this disruption was recorded on an infrasound station in Manitoba, some 600 miles away – these data put the lower limit energy of the event at about 10 tons of TNT, which means we are dealing with a meteoroid – orbit indicates an asteroidal fragment – weighing at least 600 pounds and 2 feet in diameter. Doppler weather radar picked up fragments (meteorites) falling into Lake Michigan near the end point of the trajectory.

Ground track and Doppler radar signature (done by Marc Fries at NASA Johnson Space Center); an animation of the orbit and approach of the meteoroid is being prepared and should be available soon. We will continue to look at data as it comes in and revise the calculations if necessary.

Links to videos of this event:

Lisle, IL Police Department
https://www.youtube.com/watch?v=cF0POBcZQRk

From Highway in Wisconsin:
https://twitter.com/KrazyPhukinFoo/status/828543708299657216
https://www.youtube.com/watch?v=-AozuKJZK_4

Chillicothe IL Police Department:
https://twitter.com/chillipd?ref_src=twsrc%5Etfw

Morton Grove Police Squad
https://twitter.com/NWSChicago/status/828532116300394496

Roof of Atmospheric, Oceanic & Space Sciences Building – University of Wisconsin https://www.youtube.com/watch?v=LHubXCtdEbo

EarthCams:

Looking over Lake Michigan, from Michigan Coast: (looking too north to see the meteor itself) http://www.earthcam.com/usa/michigan/grandhaven/lakemichigan/?cam=lakemichigan
Bright flash at 2:25:13

Fireball Seen Over Tennessee and North Carolina

We observed a fireball the morning of May 4 around 12:50am EDT, traveling southwest at about 77,000 mph over the Nantahala National Forest on the Tennessee/North Carolina state line. At its brightest point, it rivaled the full moon. According to Dr. Bill Cooke in NASA’s Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Ala. , “The fireball was bright enough to be seen through clouds, which is an attention getter. In Chickamauga, Ga., one would have thought it was a flash of lightning lighting up the clouds beneath.”

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=teIZcESrNBQ[/embedyt]

Perseids Are Already Zipping Across the Sky!

The Perseids are ramping up! Here’s a Perseid meteor captured by the NASA All Sky Fireball Network on August 4th. The shower will peak the morning of August 13th. With a near-new Moon, we may get a good show that morning!

ev_20150804_074245A_02A

The 2015 Eta Aquarid Meteor Shower

Each spring as Earth passes through the debris trail from Halley’s Comet (1P/Halley), the cosmic bits burn up in our atmosphere and result in the annual Eta Aquarid meteor shower. This year the peak will occur on May 6 about 9 AM EDT with meteor rates of about 30 meteors per hour near peak. Best viewing is just before dawn on May 6. Eta Aquarids zoom around the solar system at speeds near 148,000 mph.  Unfortunately for meteor shower observing enthusiasts the moon will seriously hampered viewing of the ETAs this year. reducing the peak rate to under 20 meteors per hour.

The Eta Aquarids are pieces of debris from Halley’s Comet, which is a well-known comet that is viewable from Earth approximately every 76 years. Also known as 1P/Halley, this comet was last viewable from Earth in 1986 and won’t be visible again until the middle of 2061. The annual Eta Aquarid meteor shower gets its name because the radiant — or direction of origin — of the meteors appears to come from the constellation Aquarius.

To read more about fireballs, go to NASA All Sky Fireball Network.

An image of an Eta Aquarid meteor from the NASA All Sky Fireball Network station in Tullahoma, Tennessee  in May, 2013.
An image of an Eta Aquarid meteor from the NASA All Sky Fireball Network station in Tullahoma, Tennessee in May, 2013.

 

International Space Station Shines Brightly in Night Skies

Not even clouds could obscure the International Space Station as it passed directly over Huntsville, Ala. on the evening of June 13 at 9:15 p.m. CDT. Shining as bright as the planet Venus, the space station took nearly four minutes to traverse the sky before disappearing in the murk to the Northeast. Its passage was watched by the all sky meteor camera at Marshall Space Flight Center, which took this composite image.