Bright Fireball Spotted Over Michigan

A bright fireball lit up skies over Michigan at 8:08 p.m. EST on Jan. 16, an event that was witnessed and reported by hundreds of observers, many who captured video of the bright flash.

Based on the latest data, the extremely bright streak of light in the sky was caused by a six-foot-wide space rock — a small asteroid. It entered Earth’s atmosphere somewhere over southeast Michigan at an estimated 36,000 mph and exploded in the sky with the force of about 10 tons of TNT. The blast wave felt at ground level was equivalent to a 2.0 magnitude earthquake.

The fireball was so bright that it was seen through clouds by our meteor camera located at Oberlin college in Ohio, about 120 miles away.

Events this size aren’t much of a concern. For comparison, the blast caused by an asteroid estimated to be around 65 feet across entering over Chelyabinsk, Russia, was equivalent to an explosion of about 500,000 tons of TNT and shattered windows in six towns and cities in 2013. Meteorites produced by fireballs like this have been known to damage house roofs and cars, but there has never been an instance of someone being killed by a falling meteorite in recorded history.

The Earth intercepts around 100 tons of meteoritic material each day, the vast majority are tiny particles a millimeter in diameter or smaller. These particles produce meteors are that are too faint to be seen in the daylight and often go unnoticed at night. Events like the one over Michigan are caused by a much rarer, meter-sized object. About 10 of these are seen over North America per year, and they often produce meteorites.

There are more than 400 eyewitness reports of the Jan. 16 meteor, primarily coming from Michigan. Reports also came from people in nearby states and Ontario, Canada, according to the American Meteor Society. Based on these accounts, we know that the fireball started about 60 miles above Highway 23 north of Brighton and travelled a little north of west towards Howell, breaking apart at an altitude of 15 miles. Doppler weather radar picked up the fragments as they fell through the lower parts of the atmosphere, landing in the fields between the township of Hamburg and Lakeland. One of the unusual things about this meteor is that it followed a nearly straight-down trajectory, with the entry angle being just 21 degrees off vertical. Normally, meteors follow a much more shallow trajectory and have a longer ground track as a result.

Shows the trajectory of the meteor.
This image shows the trajectory of the meteor as determined by the eyewitness accounts posted on the American Meteor Society Website. It is likely that there are meteorites on the ground near this region. (American Meteor Society)

NASA’s Short-term Prediction Research and Transition Center reported that a space-based lightning detector called the Geostationary Lightning Mapper — “GLM” for short — observed the bright meteor from its location approximately 22,300 miles above Earth. The SPoRT team helps organizations like the National Weather Service use unique Earth observations to improve short-term forecasts.

GLM is an instrument on NOAA’s GOES-16 spacecraft, one of the nation’s most advanced geostationary weather satellites. Geostationary satellites circle Earth at the same speed our planet is turning, which lets them stay in a fixed position in the sky. In fact, GOES is short for Geostationary Operational Environmental Satellite. GLM detected the bright light from the fireball and located its exact position within minutes. The timely data quickly backed-up eyewitness reports, seismic data, Doppler radar, and infrasound detections of this event.

Data from NOAA's GOES-16 space-based weather satellite
Data from NOAA’s GOES-16 space-based weather satellite detected a bright flash of light over southeast Michigan around the time a meteor entered Earth’s atmosphere. (NASA/SPoRT)

Much like the nation’s weather satellites help us make decisions that protect people and property on Earth, NASA’s Meteoroid Environment Office watches the skies to understand the meteoroid environment and the risks it poses to astronauts and spacecraft, which do not have the protection of Earth’s atmosphere. We also keep an eye out for bright meteors, so that we can help people understand that “bright light in the night sky.”

Taurids Dust the November Sky

The Orionid meteor shower is over, as Earth has finally left the wide stream of debris produced by Comet Halley. However, we are now encountering particles produced by Comet Encke, the second comet to be assigned a name (Halley was the first). This debris wake is much larger, lasting many weeks, causing the Taurid complex of meteor showers — the South Taurids, which peak on October 10, and the North Taurids, which peak on November 12. Rates are low, only about 5 per hour, so why the interest?

1) Comet Encke is thought by some astronomers to be a piece of a larger comet that broke up 20,000 to 30,000 years ago. These comet break-ups are often caused by gravitational encounters with Earth or other planets — Jupiter especially is a bit of a Solar System bully. This break-up may explain why there are so many Encke-like pieces moving around the inner Solar System, some of them pretty big. One astronomer has even postulated that it was a huge fragment of Comet Encke’s parent that produced a 10 megaton explosion over Siberia back in 1908.

2) Taurid meteors tend to be larger than the norm, which means they are bright, many being fireballs. They also penetrate deeper into Earth’s atmosphere than many other shower meteors. For example, Orionids typically burn up at altitudes of 58 miles, whereas Taurids make it down to 42 miles. Some can get even lower — on the night of November 6, our meteor cameras tracked two 1-inch North Taurid meteors, both getting down to an altitude of of 36 miles.

3) Because they are big and possess a goodly amount of energy (imagine a 1 inch hunk of ice moving at 63,000 mph — 29 times faster than a bullet from an M-16 rifle), they produce decent quantities of light when they strike the surface of the Moon. This makes Taurid lunar impacts easy to see with Earth-based telescopes; in fact, the first lunar meteoroid impact observed by NASA was a Taurid back on November 7th of 2005, and we detected it with a 10″ telescope of the same type used by amateurs all over the world!

So when you are out at night this month, look up and watch for the occasional fireball – it’ll probably be a Taurid!

P.S. Check out the last couple weeks of meteors seen on and you will notice there are several fireballs that are associated with the Northern or Southern Taurids (NTA or STA). Don’t even have to go outside!

A bright Taurid streaks across the southern Tennessee sky in this image taken by a NASA meteor camera in the wee hours of November 7, 2011.

The same Taurid; the bright flare in the meteor about two-thirds of the way into the video is caused by the meteor breaking into smaller pieces. When this happens, energy is released, resulting in a flash of light.

This graphic shows the location of the first lunar meteoroid impact observed by NASA on November 7, 2005. Originating from Comet Encke, it was a Taurid meteoroid striking the Moon’s surface with a speed of about 63,000 mph. The sequence of false color images at the lower left shows the impact flash as it evolved over consecutive video frames (1/30th second intervals).

From Athens to Tuscaloosa — In 3 Seconds!

MSFC’s all sky meteor camera recorded this bright meteor last night (November 1st) at 9:04 pm CDT. Blazing across the sky at 40 miles per second (144,000 mph), the 1 inch visitor from space took only 3.3 seconds to go 132 miles, starting at a point just northeast of Athens, Alabama and burning up west of Tuscaloosa.

Now that’s moving!



Northern Lights Travel South

On Oct. 24, 2011, the Northern Lights glowed over North Alabama, visible even though the skies were bright from city lights.


Aurora Borealis, or Northern Lights, are unusual so far south — the colorful, 20-minute display was a rare sighting caused by a recent solar storm. This video was captured by the color allsky camera at the Automated Lunar and Meteor Observatory, or ALaMO, at the Marshall Center in Huntsville, Ala.