Southern California Lit Up By Fireball

The fireball over southern California last night at 7:49 PM PST was a North Taurid.  Brighter than the Full Moon, it was caused by a piece of Comet Encke about 2 feet in diameter hitting the atmosphere at 56,000 mph. Information about the fireball was provided by NASA’s Meteoroid Environment Office (MEO) and is the NASA organization responsible for meteoroid environments pertaining to spacecraft engineering and operations. The MEO leads NASA technical work on the meteoroid environment and coordinates the existing meteoroid expertise at NASA centers.

comet2comet1

NASA All Sky Fireball Network Cameras Catch Perseids

The annual Perseid meteor shower peaked on Aug. 12 and 13, 2013, filling the sky with streaks of light caused by the meteoroids burning up in Earth’s atmosphere. Big meteor showers like the Perseids, are caused when Earth travels through a region of space filled with debris shed by a comet. The Perseids have been observed for at least 2,000 years and are the small fragments from comet Swift-Tuttle. These bits of ice and dust wander in space for centuries, finally burning up in the Earth’s atmosphere to create one of the best meteor showers of the year.

Compilation of Perseid meteors taken by the NASA All Sky Fireball Network cameras. Video credit: NASA/MSFC/MEO

iotd

This Perseid fireball meteor was observed in the skies over Chickamauga, Ga., on Aug. 11, 2013, at 2:14:49 a.m. EDT. It was also recorded by four other cameras in the NASA All Sky Fireball Network. Image Credit: NASA/MSFC/MEO

Perseids Already Lighting Up The Night

Here is a video of a bright Perseid seen by our all-sky camera located at PARI (NC) in the early morning hours of July 30. Several Perseids have already been detected and they are not set to peak for over a week! The nights of August 11-12 and 12-13 will be the best time to observe, but check out fireballs.ndc.nasa.gov regularly to see how many have already been detected by our all-sky cameras!

 

Bright Fireball Over North Carolina

The American Meteor Society has received over 80 reports from the public about a bright fireball seen on July 13, 2013 at 04:16:18 UTC (corresponding to July 13, 2013 at 00:16:18 EDT).  Fireball sightings range from Georgia and South Carolina up through Virginia, West Virginia and Kentucky, with most coming from North Carolina.

The NASA All Sky Fireball Network detected this fireball with four cameras stationed in Chickamauga, Georgia, Tullahoma, Tennessee, Dahlonega, Georgia, and Cartersville, Georgia.  The event was just on the edge of the field of view in each camera, but bright enough to get the attention of the NASA Meteoroid Environment Office in Huntsville, Alabama, the engineers who run the NASA Network.

Preliminary analysis of NASA data indicates that this fireball came in at a speed of 28.1 km/s (62,900 mph) at an angle of 32 degrees from horizontal.  The 600 g (1.3 lb) body was first picked up over Stanley, North Carolina at an altitude of 66.1 km (41 miles) and ablated most if not all of its mass away until it was last detected at 22.6 km (14 miles) over Morganton, North Carolina.

If you observed this fireball you can make a report to the American Meteor Society.  If you’d like to look through more images/movies of meteors please visit the NASA All Sky Fireball Network.

fireball1Image of the North Carolina fireball of July 13, 2013 taken by the NASA All Sky Fireball Network camera in Chickamauga, Georgia.  The fireball exhibited a bright flare towards the end of its path. (Image Credit: NASA MEO)

map

The fireball trajectory is shown as a green line – the meteor moved from southeast to northwest.  The southeastern branch of the NASA All Sky Fireball Network is shown as diamonds – red diamonds indicate that the fireball was observed from that station.  Stations with a black diamond did not observe the fireball due to weather or geometry. Observer report information (blue people symbols) is taken from the American Meteor Society.  (Image Credit: NASA MEO)

Fireball in the Sky!

The NASA All Sky Fireball Network detected this beauty on May 16, 2013 at 03:11:50 UTC.  Observed by 6 meteor cameras, this fireball penetrated deep into the atmosphere, making it down to an altitude of 36 km (22 miles).

A view of the fireball from Cartersville, Georgia.  (NASA/MEO)

The 350 gram meteoroid responsible for this brilliant display entered the atmosphere at around 22 km/s (49,000 mph) — slow for a meteoroid! — and decelerated to about 10 km/s (22,000 mph) before disintegrating over northwest Georgia.

Map showing the location of 6 cameras in the NASA All Sky Fireball Network.  Color-coded circles indicate the approximate field of view of each camera.  The meteor’s path is shown in white. (NASA/MEO/D. Moser)

Calculations indicate a radiant in the constellation Libra.

Eta Aquarids Caught on Camera

 

Same meteor — same location — two different meteor cameras! The video shows the same meteor (an Eta Aquarid!) from one of our all-sky cameras and from our wide-field camera (~20×15 degree FOV) both located at Marshall Space Flight Center in Huntsville.

 

 

(Credit: All Sky Camera Network)

NASA All Sky Fireball Network Captures Eta Aquarids

A composite image of 13 Eta Aquarid meteors from the NASA All Sky Fireball Network station in Mayhill, New Mexico the morning of May 6, 2013.  Clouds seriously hampered our view of the ETAs this year. Observations reported to the International Meteor Organization indicate an outburst in the early hours of  May 6th UTC.

(Credit: All Sky Camera Network)

Lyrid Meteor Over Georgia

 

 

(Credit: MSFC Meteoroid Environment Office)

A Lyrid meteor streaks though the dawn sky over North Georgia College and State University. Moving at 105,800 mph, this inch-diameter piece of Comet Thatcher lasted less than one and a half seconds, burning up 46 miles above Earth’s surface. The second image shows the same meteor seen from the Tellus Science Museum located in Cartersville, GA, some 50 miles distant. By measuring the change in the meteor’s position (triangulation), we can determine its trajectory and speed.
 
Lyrids are pieces of debris from the periodic Comet C/1861 G1 Thatcher and have been observed for more than 2,600 years. In mid-April of each year, Earth runs into the stream of debris from the comet, which causes the Lyrid meteor shower. You can tell if a meteor belongs to a particular shower by tracing back its path to see if it originates near a specific point in the sky, called the radiant. The constellation in which the radiant is located gives the shower its name, and in this case, Lyrids appear to come from a point in the constellation Lyra.

 

Why Wasn't the Russian Meteor Detected Before it Entered the Atmosphere?

This is the question that keeps cropping up, and it deserves an answer. Images are being posted showing the fragments and they look like ordinary chondrites of asteroidal origin. This material is dark, and not very reflective, which makes it difficult to spot out in outer space, especially if the object is bus or house size.

Astronomers measure brightnesses in magnitudes — the larger, more positive the number, the fainter the object is. The Sun is magnitude -27, the planet Venus -4, the star Vega 0, and the faintest star you can see is about +6. The best asteroid survey telescopes have a magnitude limit of about +24, which is about 16 million times fainter than what you can see with the unaided eye.

We can now use the latest orbit determined by Dave Clark (and yes, the meteor came roughly from the East, not from the North as stated in the initial NASA reports) and combine it with the estimated size and reflectivity to figure out when we should have seen the meteoroid in the asteroid survey telescopes. The calculations can be displayed in a graph like this one. Note that, even with very large telescopes, the meteoroid would not have been visible until a mere 2 hours (135,000 km from Earth) before impact — very little time to sound a warning.

Even if we had been looking at the right spot and the right time, there is another problem — the meteoroid would be in the daylit sky, and telescopes cannot see faint objects in the daytime.

Simply put, the meteoroid was too small for the survey telescopes and came at us out of the Sun.

Bright Leonid Fireball


There are numerous reports of a bright fireball over northwest Alabama on Sunday, Nov. 18 at approximately 7:30 p.m. EST (6:30 p.m. CST). Southeastern cameras  managed by NASA’s Meteoroid Environment Office recorded the fireball, which was brighter than the moon.

(Credit: NASA/MFSC/MEO) 


(Credit: NASA/MFSC/MEO)

The image above is from the Marshall Space Flight Center camera. The moon is the bright object at the bottom right, and the fireball is the REALLY bright object. Even though this was a very bright fireball, the meteor fragmented too high in the atmosphere to produce meteorites on the ground — very spectacular, but nothing of substance survived.

Details for the fireball meteor:

Time: Sunday, Nov. 18, 7:29:25 p.m. EST (6:29:25 p.m. CST)
Speed: 28,400 mph
Direction: Roughly north to south

The fireball appeared 49 miles above the Alabama/Tennessee state line just  north of Athens, Ala. It disintegrated 28 miles above Ole Carriage Dr., just east of Athens. A map of the meteor trajectory appears below.

(Credit: NASA/MFSC/MEO)

This may very well be the brightest fireball we have seen with the Marshall Center camera!