Fireball lights up the sky over Salt Lake City

A bright meteor flew through the skies over northern Utah on Saturday morning, later raining down meteorites over the Great Salt Lake.

Residents of the Salt Lake City area were startled by loud booms at 8:30 a.m. MDT on Saturday, Aug. 13, 2022. Eyewitnesses saw a fireball in the sky, 16 times brighter than the full Moon.

GOES 17 Geostationary Lightning Mapper detection of the Aug. 13, 2022, fireball over northern Utah.
GOES 17 Geostationary Lightning Mapper detection of the Aug. 13, 2022, fireball over northern Utah. Credits: NOAA

Approximately 22,000 miles out in space, NOAA’s Geostationary Lightning Mappers (GLM) onboard the Geostationary Operational Environmental Satellites (GOES) 17 and 18 detected the meteor, which was first seen 50 miles over West Valley City. However, it is difficult to pinpoint its exact trajectory.

“Daytime fireballs are very tough to analyze,” said Bill Cooke, lead of NASA’s Meteoroid Environments Office at Marshall Space Flight Center in Huntsville, Alabama. “There are few eyewitness sightings of the fireball and videos posted on social media are difficult to calibrate without stars in the background.”

The meteor was first seen 50 miles over West Valley City, Utah, moving to the northwest at 39,000 miles per hour. The object broke apart above the eastern shore of the Great Salt Lake.
The meteor was first seen 50 miles over West Valley City, Utah, moving to the northwest at 39,000 miles per hour. The object broke apart above the eastern shore of the Great Salt Lake. Credits: NASA

After traveling northwest at 39,000 miles per hour, the object – a piece of an asteroid about 2 feet across – broke apart above the eastern shore of the lake. “One meteorite has been recovered from the lake shore,” said Cooke. “There are probably more, but I would expect the vast majority fell into the water.”

NASA studies meteoroid environments in space to protect astronauts and satellites in space. NASA’s Meteoroid Environment Office prepares meteoroid forecasts for missions like Artemis I, the first integrated test of NASA’s deep space exploration systems: the Orion spacecraft, Space Launch System rocket, and the ground systems at Kennedy Space Center in Cape Canaveral, Florida. The Artemis I launch is currently targeted for Aug. 29.

For more information on NASA’s All Sky Fireball Network, visit:

https://fireballs.ndc.nasa.gov 

To follow and share meteor updates, visit:

https://www.facebook.com/NasaMeteorWatch

By Hannah Maginot

New meteor shower? How many meteors will I see, really?

Astronomers are excited about the possibility of a new meteor shower May 30-31. And that excitement has sparked a lot of information about the tau Herculids. Some has been accurate, and some has not.

We get excited about meteor showers, too! But sometimes events like this don’t live up to expectations – it happened with the 2019 Alpha Monocerotid shower, for example. And some astronomers predict a dazzling display of tau Herculids could be “hit or miss.”

This infrared image from NASA's Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3.
This infrared image from NASA’s Spitzer Space Telescope shows the broken Comet 73P/Schwassman-Wachmann 3 skimming along a trail of debris left during its multiple trips around the sun. The flame-like objects are the comet’s fragments and their tails, while the dusty comet trail is the line bridging the fragments. (Credit: NASA)

So, we’re encouraging eager skywatchers to channel their inner scientists, and look beyond the headlines. Here are the facts:

  • On the night of May 30 into the early morning of May 31, Earth will pass through the debris trails of a broken comet called 73P/Schwassmann-Wachmann, or SW3.
  • The comet, which broke into large fragments back in 1995, won’t reach this point in its orbit until August.
  • If the fragments from were ejected with speeds greater than twice the normal speeds—fast enough to reach Earth—we might get a meteor shower.
  • Spitzer observations published in 2009 indicate that at least some fragments are moving fast enough. This is one reason why astronomers are excited.
  • If a meteor shower does occur, the tau Herculids move slowly by meteor standards – they will be faint.

Observers in North America under clear, dark skies have the best chance of seeing a tau Herculid shower. The peak time to watch is around 1am on the East Coast or 10pm on the West Coast.

We can’t be certain what we’ll see. We can only hope it’s spectacular.

Loud fireball spotted over southern Mississippi mostly heard, hardly seen

A fiery meteor streaked across the morning skies in southern Mississippi yesterday on April 27, 2022.

More than 30 eyewitnesses in the states of Arkansas, Louisiana and Mississippi reported seeing a bright fireball at 8:03 a.m. CDT. The sighting was soon followed by numerous reports of loud booms heard in Claiborne County, Mississippi, and surrounding counties.

GLM image from the GOES 16 satellite.
GLM image from the GOES 16 satellite. Credits: NOAA

Approximately 22,000 miles out in space, NOAA’s Geostationary Lightning Mappers (GLM) onboard the Geostationary Operational Environmental Satellites (GOES) 16 and 17 detected several bright flashes associated with the fragmentation’s of this bolide, or exceptionally bright meteor, which was first spotted 54 miles above the Mississippi River near the Mississippi town of Alcorn.

“This is one of the nicer events I have seen in the GLM data,” said Bill Cooke, lead of NASA’s Meteoroid Environments Office at Marshall Space Flight Center in Huntsville, Alabama.

Fireball ground track from eyewitness accounts.
Fireball ground track from eyewitness accounts. Credits: NASA/American Meteor Society

The object – thought to be a piece of an asteroid about a foot in diameter with a weight of 90 pounds – moved southwest at a speed of 55,000 miles per hour, breaking into pieces as it descended deeper into Earth’s atmosphere. It disintegrated about 34 miles above the swampy area north of Minorca in Louisiana.

The fragmentation of this fireball generated an energy equivalent of 3 tons of TNT (trinitrotoluene), which created shock waves that propagated to the ground, producing the booms and vibrations felt by people in the area.

At its peak, the fireball was over 10 times brighter than the Full Moon.

“What struck me as unusual was how few eyewitness reports we had given the skies were so clear,” said Cooke. “More people heard it than saw it.”

by Lance D. Davis

Go Outside and See the Geminids!

With the holidays right around the corner, most of us are in gift-giving mode… and one of our favorite gifts every December is the Geminid meteor shower!

This year, the peak is during the overnight hours of December 13 and into the morning of December 14. If you can’t catch the Geminids on Friday night, no worries — viewing should still be good on the night of December 14 into the early morning hours of the 15th.

The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”

Under dark, clear skies, the Geminids can produce up to 120 meteors per hour. But this year, a bright, nearly full moon will hinder observations of the shower. Observers can hope to see up to 30 meteors per hour.

Meteor
A Geminid streaks across the sky in this photo from December 2019. Image Credit: NASA

HOW CAN YOU SEE THE GEMINIDS?

Weather permitting, the Geminids can best be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14. This time is when the Geminid radiant is highest in your night sky. The radiant is the celestial point in the sky from which the paths of meteors appear to originate.

The higher the radiant rises into the sky, the more meteors you are likely to see.

Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You should soon start to see Geminid meteors!

As the night progresses, the Geminid rate will increase. If you see a meteor, try to trace it backwards. If you end up in the constellation Gemini, there is a good chance you’ve seen a Geminid. The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.

Good luck and happy viewing!

Space Station Sees Meteor over California Coast

The Expedition 59 crew on board the International Space Station captured this image of a meteor at 7:21:23 GMT on May 10, on a night pass over the Pacific Ocean and California coast. (Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center)
The Expedition 59 crew on board the International Space Station captured this image of a meteor at 7:21:23 GMT on May 10, on a night pass over the Pacific Ocean and California coast. (Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center)

Fireball Leaves Persistent Train over Western Skies

Well over 100 people in California, Nevada, Arizona and Oregon observed a fireball at 5:35 p.m. PST Dec. 19. This event was unusual not for the brightness of the fireball—similar to that of a crescent Moon—but for the persistent train left behind after the object ablated. This persistent train lasted for minutes (compared to the one second duration of the fireball) and was caused by sunlight reflecting off dust particles left behind by the meteoroid as it broke apart in Earth’s atmosphere. Upper atmosphere winds distorted the train over time, giving it a curvy, “corkscrew” appearance.

An analysis of the eyewitness accounts indicates that the meteor first became visible at an altitude of 48 miles over the Pacific Ocean some 50 miles west of the entrance to San Francisco Bay. Moving west of south at 63,000 miles per hour, it managed to survive only a second or so before ablating and breaking apart at an altitude of 34 miles above the ocean.

“Ocean track” showing the path of the fireball.
“Ocean track” showing the path of the fireball.

For videos and images of this event and the persistent train, visit the American Meteor Society website.

Bright Fireball Spotted Over Michigan

A bright fireball lit up skies over Michigan at 8:08 p.m. EST on Jan. 16, an event that was witnessed and reported by hundreds of observers, many who captured video of the bright flash.

Based on the latest data, the extremely bright streak of light in the sky was caused by a six-foot-wide space rock — a small asteroid. It entered Earth’s atmosphere somewhere over southeast Michigan at an estimated 36,000 mph and exploded in the sky with the force of about 10 tons of TNT. The blast wave felt at ground level was equivalent to a 2.0 magnitude earthquake.

The fireball was so bright that it was seen through clouds by our meteor camera located at Oberlin college in Ohio, about 120 miles away.

Events this size aren’t much of a concern. For comparison, the blast caused by an asteroid estimated to be around 65 feet across entering over Chelyabinsk, Russia, was equivalent to an explosion of about 500,000 tons of TNT and shattered windows in six towns and cities in 2013. Meteorites produced by fireballs like this have been known to damage house roofs and cars, but there has never been an instance of someone being killed by a falling meteorite in recorded history.

The Earth intercepts around 100 tons of meteoritic material each day, the vast majority are tiny particles a millimeter in diameter or smaller. These particles produce meteors are that are too faint to be seen in the daylight and often go unnoticed at night. Events like the one over Michigan are caused by a much rarer, meter-sized object. About 10 of these are seen over North America per year, and they often produce meteorites.

There are more than 400 eyewitness reports of the Jan. 16 meteor, primarily coming from Michigan. Reports also came from people in nearby states and Ontario, Canada, according to the American Meteor Society. Based on these accounts, we know that the fireball started about 60 miles above Highway 23 north of Brighton and travelled a little north of west towards Howell, breaking apart at an altitude of 15 miles. Doppler weather radar picked up the fragments as they fell through the lower parts of the atmosphere, landing in the fields between the township of Hamburg and Lakeland. One of the unusual things about this meteor is that it followed a nearly straight-down trajectory, with the entry angle being just 21 degrees off vertical. Normally, meteors follow a much more shallow trajectory and have a longer ground track as a result.

Shows the trajectory of the meteor.
This image shows the trajectory of the meteor as determined by the eyewitness accounts posted on the American Meteor Society Website. It is likely that there are meteorites on the ground near this region. (American Meteor Society)

NASA’s Short-term Prediction Research and Transition Center reported that a space-based lightning detector called the Geostationary Lightning Mapper — “GLM” for short — observed the bright meteor from its location approximately 22,300 miles above Earth. The SPoRT team helps organizations like the National Weather Service use unique Earth observations to improve short-term forecasts.

GLM is an instrument on NOAA’s GOES-16 spacecraft, one of the nation’s most advanced geostationary weather satellites. Geostationary satellites circle Earth at the same speed our planet is turning, which lets them stay in a fixed position in the sky. In fact, GOES is short for Geostationary Operational Environmental Satellite. GLM detected the bright light from the fireball and located its exact position within minutes. The timely data quickly backed-up eyewitness reports, seismic data, Doppler radar, and infrasound detections of this event.

Data from NOAA's GOES-16 space-based weather satellite
Data from NOAA’s GOES-16 space-based weather satellite detected a bright flash of light over southeast Michigan around the time a meteor entered Earth’s atmosphere. (NASA/SPoRT)

Much like the nation’s weather satellites help us make decisions that protect people and property on Earth, NASA’s Meteoroid Environment Office watches the skies to understand the meteoroid environment and the risks it poses to astronauts and spacecraft, which do not have the protection of Earth’s atmosphere. We also keep an eye out for bright meteors, so that we can help people understand that “bright light in the night sky.”

The Greatest Meteor Show of All Time

By Bill Cooke

At NASA, we get very excited about many astronomical events — to name just a few, the return of Halley’s Comet back in 1985/86; the impact of the fragments of Comet Shoemaker-Levy 9 with Jupiter in 1992; the Leonid meteor storms of 1998, 1999, 2001 and 2002; and, of course, the upcoming total solar eclipse on Aug. 21 of this year.

Some of these events get blown a bit out of proportion. A classic example is that every time Mars comes to opposition (closest approach to Earth), the internet reverberates with the very false statement that Mars will appear as large as the Moon at that time. Nothing could be farther from the truth, as Mars, at its very closest to Earth, appears only 1/70th the apparent diameter of the Moon.

This year we have a new one — reports are circulating that this year’s Perseids will be the “brightest shower in recorded human history,” lighting up the night sky and even having some meteors visible during the day. We wish this were true… but no such thing is going to happen.

In this 30 second exposure, a meteor streaks across the sky during the annual Perseid meteor shower Thursday, Aug. 13, 2015, in Spruce Knob, West Virginia. Photo Credit: (NASA/Bill Ingalls)

For one thing, the Perseids never reach storm levels (thousands of meteors per hour). At best, they outburst from a normal rate between 80-100 meteors per hour to a few hundred per hour. The best Perseid performance of which we are aware occurred back in 1993, when the peak Perseid rate topped 300 meteors per hour. Last year also saw an outburst of just over 200 meteors per hour.

This year, we are expecting enhanced rates of about 150 per hour or so, but the increased number will be cancelled out by the bright Moon, the light of which will wash out the fainter Perseids. A meteor every couple of minutes is good, and certainly worth going outside to look, but it is hardly the “brightest shower in human history.” The Leonid meteor storms of the late 1990’s and early 2000’s were much more spectacular, and had rates 10 times greater than the best Perseid display.

So, if not this year’s Perseid shower, what was the greatest meteor show of all time? I think many meteor researchers would give that award to the 1833 Leonids, which had rates of tens of thousands, perhaps even 100,000, meteors per hour. During a good Perseid shower under ideal conditions, you can see about one meteor per minute. Now imagine yourself being back in 1833, on the night of Nov. 12. Looking outside, you would see something like 20 to 30 meteors PER SECOND. No wonder we read accounts like this one from South Carolina (Chambers, A Handbook of Descriptive and Practical Astronomy, Volume 1, 1889):

“Upwards of 100 lay prostrate on the ground…with their hands raised, imploring God to save the world and them. The scene was truly awful; for never did rain fall much thicker than the meteors fell towards the Earth; east, west, north and south, it was the same.”

Now, THAT’s a meteor shower. The 1833 storm had a profound effect on those that witnessed it; it also gave birth to modern meteor science. Those of us who study meteors dream of such a display happening sometime within our lifetimes.

But it won’t be caused by this year’s Perseids.

Cooke leads NASA’s Meteoroid Environment Office at the agency’s Marshall Space Flight Center.

 

Look Up! Perseid Meteor Shower Peaks Aug. 11-12

Make plans now to stay up late or set the alarm early next week to see a cosmic display of “shooting stars” light up the night sky. Known for it’s fast and bright meteors, the annual Perseid meteor shower is anticipated to be one of the best potential meteor viewing opportunities this year.

The Perseids show up every year in August when Earth ventures through trails of debris left behind by an ancient comet. This year, Earth may be in for a closer encounter than usual with the comet trails that result in meteor shower, setting the stage for a spectacular display.

“Forecasters are predicting a Perseid outburst this year with double normal rates on the night of Aug. 11-12,” said Bill Cooke with NASA’s Meteoroid Environments Office in Huntsville, Alabama. “Under perfect conditions, rates could soar to 200 meteors per hour.”

An outburst is a meteor shower with more meteors than usual. The last Perseid outburst occurred in 2009.

How to Watch the Perseids

The best way to see the Perseids is to go outside between midnight and dawn on the morning of Aug. 12. Allow about 45 minutes for your eyes to adjust to the dark. Lie on your back and look straight up. Increased activity may also be seen on Aug. 12-13.

For stargazers experiencing cloudy or light-polluted skies, a live broadcast of the Perseid meteor shower will be available via Ustream overnight on Aug. 11-12 and Aug. 13-14, beginning at 10 p.m. EDT.

Read more about the Perseids here.

An outburst of Perseid meteors lights up the sky in August 2009 in this time-lapse image. Stargazers expect a similar outburst during next week’s Perseid meteor shower, which will be visible overnight on Aug. 11 and 12. Credits: NASA/JPL
An outburst of Perseid meteors lights up the sky in August 2009 in this time-lapse image. Stargazers expect a similar outburst during next week’s Perseid meteor shower, which will be visible overnight on Aug. 11 and 12.
Credits: NASA/JPL

Fireball Over Arizona

For a few seconds early Thursday, night turned into day as an extremely bright fireball lit the pre-dawn sky over much of Arizona, blinding all-sky meteor cameras as far away as western New Mexico.

Based on the latest data, a small asteroid estimated at 5 feet (1-2 meters) in diameter – with a mass of a few tons and a kinetic energy of approximately half a kiloton – entered Earth’s atmosphere above Arizona just before 4 a.m. local (MST) time. NASA estimates that the asteroid was moving at about 40,200 miles per hour (64,700 kilometers per hour).

https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=obCldOLFJZ8[/embedyt]

Video obtained from the NASA meteor camera situated at the MMT Observatory on the site of the Fred Lawrence Whipple Observatory, located on Mount Hopkins, Arizona, in the Santa Rita Mountains.

Read more here.