Tag Archives: meteors

Get Ready for the 2016 Geminids!

Posted on by .

The Geminids are a meteor shower that occurs in December every year. The best night to see the shower is Dec. 13 into the early hours of Dec. 14. The Geminid meteor shower is caused by a stream of debris left by the asteroid, 3200 Phaethon. When the Earth passes through the trails of dust every December left by 3200 Phaethon, we see the Geminid meteor shower as the dust (meteoroids) burn up in Earth’s atmosphere creating meteors. Geminids travel through Earth’s atmosphere at 78,000 mph and burn up far above the surface.

To observe the Geminids (if it’s not cloudy), get away from bright lights, lay on your back and look up. Let your eyes get adjusted to the dark – you will see more meteors that way. Meteors can generally be seen all over the sky so don’t look in one particular direction. This year’s shower is also on the same night as a full (super) moon so viewing the shower will be more difficult. If you see a meteor, try and trace it backwards. If you end up in the constellation Gemini, there’s a good chance you’ve seen a Geminid.

Given clear weather and dark skies, the Geminid meteor shower can be seen by most of the world, though it is best viewed by observers in the northern hemisphere. This year’s bright moon will wash out all but the brightest Geminids, reducing the rate you can see them significantly. You can expect to see an average of one Geminid every few minutes in dark skies at the shower peak in the northern hemisphere. In the southern hemisphere, the Geminid radiant does not climb very high about the horizon, so observers will see fewer Geminids than their northern counterparts. Most of North America will miss the traditional peak, but because the Geminid activity is broad, good rates will be seen between 10:30 p.m. on Dec. 13 and dawn local time on the morning of Dec. 14. The most meteors should be visible around 2:00 a.m. local time on Dec. 14.

At 2 p.m. CT/3 p.m. ET, engineers & scientists from NASA’s Meteor Environment Office at NASA’s Marshall Space Flight Center will answer questions on the Geminids during a Reddit Ask Me Anything.

If you are in an area with cloudy skies, NASA’s Marshall Space Flight Center will broadcast footage of the shower (pending clear skies here) starting at 8 p.m. Dec. 13 until 6 a.m. on Dec. 14 on Marshall’s Ustream account. You can also see Geminid meteors on NASA’s All Sky Fireball network page. Follow’s NASA’s Meteoroid Environment Office on Facebook for information on meteor showers and fireballs throughout the year.
GeminidMeteorShower2012_JeffDai950 (1)

Geminid Meteor Shower to Peak Dec 13; NASA Experts to Answer Questions Dec. 12

Posted on by .

geminid_all_sky_

The annual Geminid meteor shower will peak during the overnight hours of Dec. 13-14, with best viewing typically around 2 a.m. To learn why meteors and comets are important to NASA, the public is invited to join a live Reddit Ask-Me-Anything event at 2 p.m. Dec. 12. Answering your questions will be NASA meteor experts Bill Cooke, Danielle Moser and Rhiannon Blaauw, all from NASA’s Meteoroid Environment Office at NASA’s Marshall Space Flight Center. For viewers experiencing clouds, meteor shower footage will be broadcast live from 8 p.m. Dec. 13 until 6 a.m. on Dec. 14 on Marshall’s Ustream account. Social media followers interested in joining the online conversation can tweet questions to Marshall’s Twitter account or share Geminid images by uploading them to the Geminid Meteor photo group on Marshall’s Flickr account.

Join Us For the May Camelopardalids!

Posted on by .

Step outside and take a look at the skies on the evening of May 23 into the early morning of May 24. Scientists are anticipating a new meteor shower, the May Camelopardalids. No one has seen it before, but the shower could put on a show that would rival the prolific Perseid meteor shower in August. The Camelopardalids shower would be dust resulting from a periodic comet, 209P/LINEAR.

“Some forecasters have predicted a meteor storm of more than 200 meteors per hour,” said Bill Cooke, lead for NASA’s Meteoroid Environment Office. “We have no idea what the comet was doing in the 1800s. The parent comet doesn’t appear to be very active now, so there could be a great show, or there could be little activity.”

The best time to look is during the hours between 06:00 and 08:00 Universal Time on May 24, or between 2-4 a.m. EDT. That’s when forecast models say Earth is most likely to encounter the comet’s debris. North Americans are favored because their peak occurs during nighttime hours while the radiant is high in the sky.

On the night of May 23-24, NASA meteor expert Bill Cooke will host a live web chat from 11 p.m. to 3 a.m. EDT. Go to this page to learn more about the May Camelopardalids, to get information about the live chat and to view the live Ustream view that will be available during the chat.

 camel

Perseids Already Lighting Up The Night

Posted on by .

Here is a video of a bright Perseid seen by our all-sky camera located at PARI (NC) in the early morning hours of July 30. Several Perseids have already been detected and they are not set to peak for over a week! The nights of August 11-12 and 12-13 will be the best time to observe, but check out fireballs.ndc.nasa.gov regularly to see how many have already been detected by our all-sky cameras!

 

First Observations of the 2013 Eta Aquarids

Posted on by .

Despite interference from the moon and clouds (and rising sun!), this morning we snagged our first observations of the 2013 Eta Aquarids.  Here’s an image of one from the all sky camera in Tullahoma, Tennessee.  The Eta Aquarids peak in the pre-dawn hours on May 6 and are material from Halley’s comet.  They zoom around the solar system at speeds near 148,000 mph.  The one seen here burned up completely in our atmosphere over Nunnelly, Tennessee at a height of 58.7 miles above the ground.

(Credit: All Sky Camera Network)

NASA All Sky Fireball Network Watches the Skies

Posted on by .

A meteor streaks across the skies above Huntsville, Ala. (NASA)

The night sky is constantly changing. The Earth rotates and revolves about the sun, creating a backdrop of stars that is always in motion. The moon grows large in the sky, and then smaller again, in a seemingly endless cycle. Now and then, brilliant streaks of light can be seen in the night sky, there and gone again in a split second. These “shooting stars”, also called meteors, are seen when bits of rock and ice, the leftovers from voyaging comets and asteroids, enter the atmosphere and ablate, or burn up. These tiny travelers, and the light they produce, are the concern of the NASA Meteoroid Environment Office, or MEO, at the Marshall Space Flight Center which is responsible for understanding the meteoroid environment spacecrafts may encounter during missions.

To more closely track and study bright meteors called fireballs, the NASA All Sky Fireball Network watches the skies with six specialized black and white video cameras set up in four states scattered across the Southeast and Southwest. The network’s multiple cameras provide overlapping views of the night sky, thus able to detect the same fireball to allow calculation of its location, speed, and orbit. The network, established by the Meteoroid Environment Office in 2008, sees several multi-station meteors (those detected by more than one camera) each night. The resulting fireball data — in the form of images, movies, diagrams, and text files — is posted online daily. The office uses this data to construct models of the meteoroid environment, something very important to spacecraft designers.

With cameras now in Alabama, Georgia, Tennessee, and New Mexico, the NASA All Sky Fireball Network plans to expand into North Carolina and beyond in 2012. The ultimate goal is a network of about 15 cameras in the United States in science centers, planetaria, and schools. To engage students, and promote STEM (science, technology, engineering, and math) disciplines in the classroom, the MEO has created a workshop for educators with information about meteors, a description of the network, and suggestions for how to use the data in the classroom.

 

Rare Double Quadrantid Meteor Sighting

Posted on by .


The wide-field meteor camera at NASA’s Marshall Space Flight Center recorded these two simultaneous Quadrantid meteors on Jan. 4 at approximately 5 a.m. EST. Moving at 92,000 mph, the meteors flashed across the field of view in just over a second.


 



Credits: NASA/MSFC/Meteoroid Environments Office

It's Raining Comet Halley!

Posted on by .


We at the Meteoroid Environment Office are hoping that you have clear skies on May 5/6 when we have the opportunity to see pieces of Comet Halley whiz through Earth’s atmosphere!


Image of an Eta Aquarid meteor, taken the night of May 3, 2011. (NASA/MSFC)


Comet Halley (NASA)


Depending on your age, you may remember 25 years ago when people lined up for blocks to look through a telescope and get a glimpse of this popular comet. It will be another 51 years before the comet will pass close enough to earth for us to see it in its entirety, but the debris it has left orbit-after-orbit gives us a yearly show in the Eta Aquariid meteor shower.

Unfortunately the shower will not be seen in all its glory from the northern hemisphere. Our southern hemisphere friends will get a better show than us, seeing up to 60 meteors per hour if the skies are clear and dark. The radiant (the point in the sky that the meteors appear to come from) will not rise as high for those in northern latitudes, but we still may be able to see 20-30 per hour. Very few meteors will be seen if you live upwards of 40 degrees N latitude. Don’t let the low numbers stop you, though! With the radiant being fairly low in the sky these meteors may be ‘Earth grazers’ which hit the atmosphere at a shallow angle resulting in very long and lingering trails. Earth grazers aren’t numerous, but they are memorable. To see these meteors look straight up if you are in the southern hemisphere, and straight up but slightly to the east if you are in the northern hemisphere. Let your eyes adjust to the dark, and be patient.

Meteor showers are named after the constellation that their radiant is in, in our case the constellation Aquarius. Specifically the radiant is in the ‘water jar’ near one of the constellations brightest stars, Eta Aquariid.  The images below will help both southern and northern observers navigate the skies and locate the radiant (but don’t look directly at the radiant in order to see the meteors; look up!).

The Eta Aquariids are not only interesting because of their comet of origin. The Eta Aquariids have quite the history, being first recorded in old Chinese annals from the 8th century! It was’’t until 1868 that people suspected that Comet Halley and the Eta Aquariids were related, and not confirmed until 1900 by William F. Denning.

Another interest to scientists is the complexity/inconsistency of the activity rates. May 4-6 is always the main peak, but other maxima are frequently seen around this time. This unusual activity is likely caused by thick and thin filaments within the stream that Earth passes through. These filaments could be from planetary perturbations as well as a refreshing of the stream by comet Halley. One sure thing is that the Eta Aquariids are one of the oldest known showers, yet still one of the most interesting to study.

Since you are going to be out anyways, why not check out what else is in the sky! Saturn will be setting on the opposite side of the sky as the Eta Aquariid radiant and in the early morning you may be able to catch a party of planets; Venus, Mercury, Jupiter, and Mars (in that order) will rise in the east just before the sun does. Using a small telescope or binoculars may aid in seeing the planets. Happy viewing!


Eta Aquariid radiant in the water jar of Aquarius — orientation for northern observers
(Starry Night). Constellations as seen from Huntsville Alabama, 4 am local time
(UTC-5 hours) May 6.




Eta Aquariid radiant in the water jar of Aquarius — orientation for southern observers
(Starry Night). Constellations as seen from Brazil, 4 am local time (UTC-3 hours) May 6.


Quick facts on the Eta Aquarids:

  • Parent body: Comet 1P/Halley
  • Velocity:  66 km/s or 152,000 miles/hr
  • ZHR (meteors per hour): 60 max
  • Radiant constellation: Aquarius
  • First time recorded: 8th century by the Chinese, though the connection to Comet Halley wasn’t made until1900.


Courtesy of Rhiannon Blaauw, NASA’s Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Ala.

Live Web Chats Today: Geminid Meteor Shower

Posted on by .


Baby, it’s cold outside — but you can still enjoy the best meteor shower of the year. The 2010 Geminid meteor shower promises to be lively, with realistic viewing rates of 50-80 meteors per hour and potential peaks reaching 120 meteors per hour. Anytime between Dec. 12-16 is a valid window for Geminid-watching, but the night of Dec. 13-14 is the anticipated peak.

You have two opportunities to learn more about the Geminids from meteor experts based at NASA’s Marshall Space Flight Center. On Monday, Dec. 13 from 3:00 to 4:00 p.m. EST, meteor experts Danielle Moser and Rhiannon Blaauw will answer your questions, then you can stay “up all night” to observe the Geminids with NASA astronomer Bill Cooke. Have the coffee ready, then join them online from 11:00 p.m. to 5:00 a.m. EST as the Geminids peak in the skies over Earth.

Joining the chats is easy. Simply go to https://www.nasa.gov/connect/chat/geminids2010.html a few minutes before each of the chat start times list above. The chat module will appear at the bottom of this page. After you log in, wait for the chat module to be activated, then ask your questions. Here’s to a spectacular viewing!

False-color composite view of 2008 Geminid meteor shower is courtesy of Bill Cooke, NASA’s Meteoroid Environment Office at the Marshall Space Flight Center.
 

Page 1 of 212