NASA Meteor Cameras Get Weird for Halloween

As we head into the darker half of the year here in Earth’s Northern Hemisphere, astronomers at NASA’s Meteoroid Environment Office are sharing eerie images from their meteor cameras. The specialized cameras are part of a network set up by the meteor team to observe and study fireballs — meteors brighter that the planet Venus. Here’s a look at the some of the birds, bugs and stranger things that have crept from the shadows into their view.

Creepy Crawler (bug on the camera dome)
Creepy Crawler (bug on the camera dome)
Nocturnal Creepy Crawler
Nocturnal Creepy Crawler
Reluctant Creepy Crawler
Reluctant Creepy Crawler
Hooded visitor from another space and time?
Hooded visitor from another space and time? (Taken by a camera in our sister camera network, located in Canada.)
Come a little closer
Come a little closer (bird on camera dome)
The Mind Flayer
The Mind Flayer (spider on camera dome)

Images and video of fireballs from the cameras are available for anyone to download from NASA’s All-Sky Fireball Network. For a complete album of our favorite eerie images from the cameras, visit Marshall’s Flickr gallery.

International Observe the Moon Night 2019

Heads up, skywatchers! Did you know there’s a night set aside each year to celebrate and observe our Moon? International Observe the Moon Night has been held annually since 2010. This year it’s Saturday, Oct. 5.

This year also offers an opportunity to celebrate lunar exploration at a time when we are preparing to land American astronauts, including the first woman and the next man, on the Moon by 2024. Through the NASA’s Artemis lunar exploration program, we will use innovative new technologies and systems to explore more of the Moon than ever before, and use that knowledge to take the next giant leap, sending astronauts to Mars.

If you live in or near Huntsville, Alabama, you can join our local Moon celebration Saturday, from 5:30-8:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration. The event is organized and hosted by the Planetary Mission Program Office at NASA’s Marshall Space Flight Center. This year’s event will include lunar and solar system exploration exhibits and more hands-on activities than ever. Members of the public are invited to attend, and it is free! Don’t live in Huntsville? No worries! There are events held worldwide and you can find a list of them here.

Can’t get to an event this weekend? You can still go outside no matter where you live and look at our incredible neighbor. For a list of Moon phases and other cool Moon facts, check out the NASA Science Earth’s Moon page.

And happy Moon-gazing, skywatchers!

Ask an Astronomer: What’s a Supermoon?

“The second supermoon of 2019 happened Feb. 19. The third of 2019 will happen March 19. But what’s a supermoon? We asked NASA astronomer Mitzi Adams what’s really going on here. Here’s her answer!”

Like the orbits of all bodies in the solar system, the Moon’s orbit around Earth is not circular, it has an oval or elliptical shape, with Earth slightly offset from the center. As a result, there are two distance extremes of each orbit: closest approach, known as perigee, and the farthest, or apogee. When the Moon is at closest approach and within a day or so of being full, it is called a supermoon because the Moon will be at its brightest and largest.

For the supermoon on Feb.19, the Moon will be full only six hours after it reaches the perigee distance of its orbit, making it the brightest and largest full Moon of the year. A supermoon also occurred in January with a slightly more distant perigee, a mere 362 miles (583 kilometers) farther away, but 14 hours after the full Moon. However, January’s supermoon included a total lunar eclipse seen in all of North and South America. The third and last supermoon of the year will happen March 19, when the perigee distance will be reached a day and five hours before the full Moon (see the table below for details).

Date Perigee Distance Time Before or After Full Moon
Jan. 21 222,043 miles (357,344 km) 15 hours after
Feb. 19 221,681 miles (356,761 km) 6 hours before
March 19 223,308 miles (359,380 km) 1 day, 5 hours before
A total lunar eclipse accompanied the first in a trilogy of supermoons in 2019.
A total lunar eclipse accompanied the first in a trilogy of supermoons in 2019. Credit: NASA/MSFC/Joe Matus

To watch tonight’s supermoon, or any full Moon, simply look for the Moon to rise in the east as the Sun sets in the west. The Moon will look extremely large when it rises and sets. This “Moon illusion” happens when the Moon is close to the horizon and there are objects within our line of sight such as trees or buildings. Because these relatively close objects are in front of the Moon, our brain is tricked into thinking the Moon is much closer to the objects that are in our line of sight. At Moon rise or set, it only appears larger than when it is directly overhead because there are no nearby objects with which to compare it. You can check this. When the Moon rises, hold a coin at arm’s length so that the coin covers the Moon. Repeat this throughout the evening and you will see that the Moon’s size does not change.

As it rises on Feb. 19, the Moon will be in the constellation of Leo. However, since the Moon is so bright, you may have trouble seeing the bright star Regulus, which is at the end of the “backwards question mark” that makes Leo easy to spot.

Regulus
Credit: Stellarium

Looking more or less directly overhead, you could see the famous constellation Orion the Hunter with bright stars Betelgeuse, a reddish star, and Rigel, a bluish star. With a telescope or binoculars, you might be able to pick out the Orion nebula just below the belt stars of Orion, Alnitak, Alnilam, and Mintaka.

Great Nebula in Orion
Credit: Stellarium

To the west of Orion you should be able to spot reddish Mars.

Mars
Credit: Stellarium

As we observe this supermoon, keep in mind that 2019 marks the 50th anniversary of a great technological feat ­­– humans travelled to the Moon, walked on its surface and returned safely to Earth. Twelve people walked on the Moon. Neil Armstrong and Buzz Aldrin were the first two, but let us not forget the other ten: Alan Bean, Charles “Pete” Conrad, Edgar D. Mitchell, Alan Shepard, Dave Scott, James Irwin, John Young, Charles Duke, Eugene “Gene” Cernan and Harrison Schmitt. These men, along with the command module pilots Michael Collins, Dick Gordon, Stu Roosa, Al Worden, Ken Mattingly, Ron Evans and the multitudes of support staff back on Earth, fulfilled a dream of exploring our nearest neighbor in space. As NASA and its commercial and international partners plan to return the Moon over the next decade with a long-term continued presence, the list of Moon walkers will surely include women, as well.

A good resource for more information on supermoons may be found here: https://solarsystem.nasa.gov/moons/earths-moon/what-is-a-supermoon/.

Constellation screenshots are from Stellarium, a planetarium software package that is accompanied by a GNU General Public License

Mitzi Adams is a solar scientist in the Heliophysics and Planetary Science Branch at NASA’s Marshall Space Flight Center.

Get Ready Stargazers: The Geminids Are Coming!

The second week of December heralds the beginning of the strongest meteor shower of the year – the Geminids. It’s a good time to bundle up, go outside and watch one of Mother Nature’s best sky shows!

The Geminids are active every December, when Earth passes through a massive trail of dusty debris shed by a weird, rocky object named 3200 Phaethon. The dust and grit burn up when they run into Earth’s atmosphere in a flurry of “shooting stars.”

Phaethon’s nature is debated. It’s either a near-Earth asteroid or an extinct comet, sometimes called a rock comet. There is another object – an Apollo asteroid named 2005 UD – that is in a dynamically similar orbit to Phaethon, prompting speculation that the two were once part of a larger body that split apart or collided with another asteroid.

Most shower meteors are shed by comets when their orbits take them into the inner Solar System, but the Geminids may be the debris from this long-ago breakup or collision event. When you consider that the Geminid meteor stream has more mass than any other meteor shower, including the Perseids, whatever happened back then must have been pretty spectacular.

So what do potential Geminid watchers need to do this year?

It’s pretty simple, actually. The nearly First Quarter Moon sets around 10:30 p.m. local time, so wait until then to go out – the light from the Moon washes out the fainter meteors, which are more numerous. Find the darkest place you can, and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will mess up your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You will soon start to see Geminid meteors. As the night progresses, the Geminid rate will increase, hitting a theoretical maximum of about 100 per hour around 2 a.m.

Bear in mind, this rate is for a perfect observer under perfect skies with Gemini straight overhead. The actual number for folks out in the dark countryside will be slightly more than 1 per minute. Folks in suburbs will see fewer, 30 to 40 per hour depending on the lighting conditions. And those downtown in major cities will see practically nothing – even though the Geminids are rich in beautiful green fireballs, the lights of New York, San Francisco, or Atlanta will blot even them out. Dark clear skies are the most important ingredient in observing meteor showers.

Comet Wirtanen has a light blue hue in this image taken by NASA astronomer Bill Cooke using an iTelescope widefield 90 mm refractor and color CCD camera Nov. 29 at Siding Spring Observatory in Australia.

And while you’re scanning the sky for Geminids, you might notice a small, faint “ghostly” green patch in the constellation of Taurus – that’s Comet 46P/Wirtanen, which will be making its closest approach to Earth (7 million miles) for the next 20 years. We are actually going to have a comet visible to the unaided eye this holiday season!

Graphic showing the locations of the Geminid radiant and Comet 46P/Wirtanen for 35 degrees north latitude at 10:30 p.m. on the night of the Geminid peak (December 13).

Comets are notoriously unpredictable beasts, but if Wirtanen continues to follow its current brightening trend, it may reach a peak magnitude of around +3 (about as bright as a star in the handle of the Little Dipper) a couple of days past the Geminid peak, on December 16. Binoculars or a small telescope are good for taking a peak at Wirtanen, so bring them along for your night of Geminid watching. A green comet to complement the green fireballs!

Total Lunar Eclipse

By Mitzi Adams, NASA Marshall solar scientist

Last August, citizens and visitors to the United States of America had a rare opportunity to see a total solar eclipse, because the path of totality ranged from Oregon to South Carolina, essentially bisecting the country. But alas, the total lunar eclipse happening on Friday, July 27, will totally miss the United States. Being able to observe the Moon totally immersed in Earth’s shadow depends mostly on whether it is dark at the time the eclipse happens, so about half the Earth would be in the right place to see the eclipse, weather permitting of course. This time, residents of Europe, Africa, Asia, Australia, and parts of South America will be so lucky. In contrast, totality for a solar eclipse is very narrow and only a very small portion of Earth is in the shadow of the Moon. For the August 2017 eclipse, only those within an approximately 100 km (63 miles) wide path saw the Sun totally eclipsed.

So what happens when there is a lunar eclipse? Unlike the solar variety, Earth blocks the Sun for a lunar eclipse. For the lunar eclipse to happen, the Moon’s phase must be “full”, which means that the orbiting Moon is opposite the Sun, with Earth in between. When the Sun sets in the west, the Moon rises in the east — and this event happens once a “moonth” (or month). But a lunar eclipse does not happen every month. Why is that?

The Moon is seen here during the January 2018 lunar eclipse, setting in the western horizon, not yet in totality.
The Moon is seen here during the January 2018 lunar eclipse, setting in the western horizon, not yet in totality.
Image credit: NASA/Alphonse Sterling

Well, now we get into more tricky territory. Let’s try a thought experiment. Draw a line between the centers of the Sun, Earth, and Moon. This line is part of a plane that describes how Earth orbits the Sun, called the plane of the ecliptic. The Moon orbits Earth, only its orbit is tilted with respect to the plane of the ecliptic, sometimes the Moon is above the plane, sometimes it is below the plane. Only when the Moon’s orbit lines up with the ecliptic plane do we have a chance for an eclipse. If the phase of the Moon is “full” when this happens, we have a lunar eclipse. If the phase of the Moon is “new,” we have a solar eclipse. Sometimes the orbital planes do not line up exactly, in those cases, we would have partial eclipses.

Fred Espenak, click here for more info on Lunar Eclipse Geometry.

The July 27 eclipse is somewhat special because the length of totality will be the longest of this century at one hour, 43 minutes. Why? Several reasons. The Moon will be at apogee, or at the farthest distance from Earth (406,000 km or 252,000 mi) possible for our Moon. Objects in orbit around Earth move slower the farther away they are, which means it will take longer for the Moon to traverse the width of Earth’s shadow. In addition, the Moon will be almost exactly on that line that connects Sun, Earth, Moon, also increasing the length of time the Moon will spend in the umbral (darkest) part of Earth’s shadow. Finally, Earth reached its greatest distance from the Sun (aphelion) quite recently (July 6), meaning that Earth’s shadow on July 27 will be close to the largest it can be, adding even more distance (and time) to the Moon’s shadowy traverse.

This image is of the full Moon before the January 2018 lunar eclipse.
This image is of the full Moon before the January 2018 lunar eclipse.
Image credit: NASA Marshall/Alphonse Sterling

The partial phase of the eclipse will begin at 18:24 UT, with totality beginning at 19:30 UT (see the NASA time zone page for help with conversion to your local time and official U.S. time). Totality will be over at 21:13 UT and the partial phase ends at 22:19 UT. Viewing a lunar eclipse does not require a telescope or even special glasses; however, while waiting for totality to begin, which is marked by a reddish-brown color to the Moon, a telescope could be used to view two planets that are in the evening sky. Mars will be visible, and should be pretty bright since there is currently a dust storm covering the entire planet. So the telescope will not see any surface detail here, but the redness of the planet will contrast well with the reddish hue of a totally eclipsed Moon. Saturn will be visible to the west of Mars — and even binoculars will resolve the rings, but a telescope could provide more detail. For all observers, find the full Moon in the night sky, Mars will be close to and below (south of) the Moon, a bright reddish “star-like” object. For detailed information about this eclipse, click here.

Bright Fireball Spotted Over Michigan

A bright fireball lit up skies over Michigan at 8:08 p.m. EST on Jan. 16, an event that was witnessed and reported by hundreds of observers, many who captured video of the bright flash.

Based on the latest data, the extremely bright streak of light in the sky was caused by a six-foot-wide space rock — a small asteroid. It entered Earth’s atmosphere somewhere over southeast Michigan at an estimated 36,000 mph and exploded in the sky with the force of about 10 tons of TNT. The blast wave felt at ground level was equivalent to a 2.0 magnitude earthquake.

The fireball was so bright that it was seen through clouds by our meteor camera located at Oberlin college in Ohio, about 120 miles away.

Events this size aren’t much of a concern. For comparison, the blast caused by an asteroid estimated to be around 65 feet across entering over Chelyabinsk, Russia, was equivalent to an explosion of about 500,000 tons of TNT and shattered windows in six towns and cities in 2013. Meteorites produced by fireballs like this have been known to damage house roofs and cars, but there has never been an instance of someone being killed by a falling meteorite in recorded history.

The Earth intercepts around 100 tons of meteoritic material each day, the vast majority are tiny particles a millimeter in diameter or smaller. These particles produce meteors are that are too faint to be seen in the daylight and often go unnoticed at night. Events like the one over Michigan are caused by a much rarer, meter-sized object. About 10 of these are seen over North America per year, and they often produce meteorites.

There are more than 400 eyewitness reports of the Jan. 16 meteor, primarily coming from Michigan. Reports also came from people in nearby states and Ontario, Canada, according to the American Meteor Society. Based on these accounts, we know that the fireball started about 60 miles above Highway 23 north of Brighton and travelled a little north of west towards Howell, breaking apart at an altitude of 15 miles. Doppler weather radar picked up the fragments as they fell through the lower parts of the atmosphere, landing in the fields between the township of Hamburg and Lakeland. One of the unusual things about this meteor is that it followed a nearly straight-down trajectory, with the entry angle being just 21 degrees off vertical. Normally, meteors follow a much more shallow trajectory and have a longer ground track as a result.

Shows the trajectory of the meteor.
This image shows the trajectory of the meteor as determined by the eyewitness accounts posted on the American Meteor Society Website. It is likely that there are meteorites on the ground near this region. (American Meteor Society)

NASA’s Short-term Prediction Research and Transition Center reported that a space-based lightning detector called the Geostationary Lightning Mapper — “GLM” for short — observed the bright meteor from its location approximately 22,300 miles above Earth. The SPoRT team helps organizations like the National Weather Service use unique Earth observations to improve short-term forecasts.

GLM is an instrument on NOAA’s GOES-16 spacecraft, one of the nation’s most advanced geostationary weather satellites. Geostationary satellites circle Earth at the same speed our planet is turning, which lets them stay in a fixed position in the sky. In fact, GOES is short for Geostationary Operational Environmental Satellite. GLM detected the bright light from the fireball and located its exact position within minutes. The timely data quickly backed-up eyewitness reports, seismic data, Doppler radar, and infrasound detections of this event.

Data from NOAA's GOES-16 space-based weather satellite
Data from NOAA’s GOES-16 space-based weather satellite detected a bright flash of light over southeast Michigan around the time a meteor entered Earth’s atmosphere. (NASA/SPoRT)

Much like the nation’s weather satellites help us make decisions that protect people and property on Earth, NASA’s Meteoroid Environment Office watches the skies to understand the meteoroid environment and the risks it poses to astronauts and spacecraft, which do not have the protection of Earth’s atmosphere. We also keep an eye out for bright meteors, so that we can help people understand that “bright light in the night sky.”

NASA Marshall Experts to Share Total Solar Eclipse In-person, on TV

On Monday, Aug. 21, for the first time in almost 100 years, all of North America will be treated to an eclipse of the sun. Those in the path of totality, running from Oregon to South Carolina, will experience one of nature’s most awe-inspiring events — a total solar eclipse.

Scientists, researchers and experts from NASA’s Marshall Space Flight Center in Huntsville, Alabama, will mobilize to experience the eclipse and share it with others. They will join participants from across the agency for a multi-hour broadcast, titled Eclipse Across America: Through the Eyes of NASA, to offer unprecedented live video of the celestial event, along with coverage of activities in parks, libraries, stadiums, festivals and museums across the nation, and on social media.

“It’s going to be a spectacular event,” said Marshall Chief Scientist James Spann. “We’ll be sharing our research and work with people and letting them know how to safely view the eclipse, not only at the events in the path of totality, but also worldwide online and on NASA Television. Excited doesn’t begin to describe how our team feels right now. It truly will be breath-taking, and we can’t wait.”

Marshall experts will be located at two of the broadcast’s 15 locations — Hopkinsville, Kentucky, and Austin Peay State University in Clarksville, Tennessee.

Read more here..

Total Solar Eclipse: The Physics of Light

By Kevin Matyi

The motion of the moon is what causes eclipses, but the dramatic change in sunlight is what makes them so impressive to observers. But what exactly is happening when the moon passes in front of the sun?

The moon is blocking the sun’s light from reaching Earth, but there is more to the situation than just that. Their relative distance to Earth is one of the most important factors.

The sun is about 400 times farther from Earth than the moon and has a diameter about 400 times larger than the moon. As a result, both the sun and moon (near perigee) appear to be the same size in the sky, allowing the moon to perfectly block out the sun and cast a shadow on Earth during a total eclipse.

The shadow we see while in the path of totality is called the umbra, and the shadow of the surrounding partial eclipse is a penumbra. The shadow from an annular eclipse (when the moon appears smaller than the sun during an eclipse, and so a ring of light is visible around it) is called an anteumbra.

The physics of how each type of shadow is formed is difficult to explain but easy to visualize, so before I tell you about them, here is a picture (technically a ray diagram) of what happens during an eclipse:

Each of the three types of solar eclipse are caused by the moon blocking light from different parts of the sun.
Each of the three types of solar eclipse are caused by the moon blocking light from different parts of the sun.
Credit: Wikimedia Cmglee

For a total eclipse, the moon has to block out all of the sun’s light. To put the moon in the best position, imagine that a person on Earth is standing under the exact middle of the moon, the centerline of a total solar eclipse.

In this case, light coming from the middle of the sun is clearly going to be blocked by the moon, since it is directly in the way and visible light cannot penetrate rock. The most difficult light to block will be coming from the top and bottom of the sun.

To figure out whether the light will be blocked, a bit of drawing can help. If the light is coming from the exact bottom of the sun and you are wondering if a person can see the light while under the exact center of the moon, draw a line between where the light starts and the person’s eyes.

Does the moon get in the way of the line? If yes, then the person is experiencing a total solar eclipse. None of the sun’s light can get past the moon, so the sun is fully blocked.

If the answer is no, but the person is still standing under the center of the moon, then they are in an annular eclipse. The moon is in the perfect position to block all of the sun’s light, but it still fails to do so. In this case, it will appear to be a large black circle with a ring of sunlight called an annulus around it.

A partial eclipse is the most difficult to explain, since it has the most variability. All but a sliver of the sun may be blocked, or the moon can barely cover any of the sun. In general though, a partial solar eclipse happens when the moon is not quite directly between the observer and sun, but is still in the way of some sunlight.

You can use the same process for determining whether a person is experiencing a total solar eclipse to figure out if they are in the penumbral shadow of the moon. A slight complication is that the moon is off center, so it matters more where the origin point of the light is.

If the person is standing a little north of the moon’s center, then the line from origin to person should start from the sun’s southernmost point, the bottom, since the northern light is less likely to be blocked due to the moon being a bit more to the south from the person’s perspective.

If any of the sun’s light is blocked by the moon, then the person is experiencing a partial solar eclipse. The limit of this blockage, where only the slightest amount of sunlight is blocked, is the edge of the penumbra shadow.

If the moon is not blocking any light, then the moon may be close to the sun but there is no eclipse happening on that spot of Earth.

When the Earth, Moon and Sun Align

By Kevin Matyi

On Aug. 21, 2017, a total solar eclipse will cross the full continental United States along a narrow, 70-mile-wide path from Oregon to South Carolina.

The last total eclipse in the U.S. was in 1979. And the last total solar eclipse that crossed the entire continental U.S. happened in 1918. But why? Why has it been 99 years, and why have the intervening partial and even total eclipses caught only parts of the country?

In short, celestial geometry is complicated but predictable. Much like many other aspects of the cosmos, it is cyclic.


Need a minute to catch up? Go ahead. We’ll wait.  Credit: NASA

Eclipse cycles arise from a natural harmony between three motions of the moon’s orbit. We call them “months” due to their repetitive nature.

The synodic month governs the moon’s phases. It’s measured by the time it takes to go from one new moon to the next, which takes about 29 ½ days. In that time, the moon rotates once around its own axis and goes around Earth once.

From the perspective of a solar eclipse, the new moon phase is important. It’s the point in the moon’s orbit when it passes between Earth and the sun. A total solar eclipse can only happen at a new moon, and only when the other types of movement line up as well.

When the moon, on its orbit around Earth, reaches the point closest to the sun we can’t see the moon reflecting sunlight, so it appears dark. This is the new moon.
Credit: NASA/Genna Duberstein

New moons happen once a month, but we don’t see eclipses every month because the moon’s orbit is tipped by about five degrees from Earth’s orbit around the sun. On most months, the new moon casts its shadow either above or below Earth, making a solar eclipse a rare treat.

The moon’s tilted orbit meets the sun-Earth plane at two points called nodes. A draconic month is the time it takes the moon to return to the same node. The moon’s orbital nodes drift over time, which is why a single location on Earth’s surface might wait hundreds of years between total eclipses.


As the moon orbits Earth, it also wobbles up and down, making total eclipses rarer than they otherwise would be.  Credit: NASA

The moon’s path around Earth is not a perfect circle, which means the distance between us and the moon changes all the time. When the moon is closest to Earth in its orbit we call it perigee, and apogee when it’s farthest. This change in distance gives rise to the anomalistic month, the time from perigee to perigee.

The farther away the moon is from Earth, the smaller it appears. When the moon blocks all of the sun’s light, a total eclipse occurs, but when the moon is farther away — making it appear smaller from our vantage point on Earth — it blocks most, but not all of the sun. This is called an annular eclipse, which leaves a ring of the sun’s light still visible from around the moon. This alignment usually occurs every year or two, but is only visible from a small area on Earth.

When moon is too small to cover the entire sun’s disk, a ring or “annulus” of bright sunlight surrounds the moon.
Credit: NASA/Cruikshank

A total solar eclipse requires the alignment of all three cycles — the synodic, anomalistic, and draconic months. This happens every 18 years 11 days and 8 hours, a period known as a saros.

One saros period after an eclipse, the sun, moon and Earth return to approximately the same relative geometry, a near straight line, and a nearly identical eclipse will occur. The moon will have the same phase and be at the same node and the same distance from Earth. Earth will be nearly the same distance from the sun, and tilted to it in nearly the same orientation.

The extra eight hours is the reason why successive eclipses in the same saros cycle happen over different parts of Earth. Earth rotates an extra third of the way around its axis. Each total solar eclipse track looks similar to the previous one, but it’s shifted 120 degrees westward.

Earth turning on its axis impacts where total solar eclipses occur.
Credit: Espenak & Meeus

During this year’s total solar eclipse, anyone within the path of totality will be able to see one of nature’s most awe-inspiring sights. This path, where the moon will completely cover the sun and the sun’s tenuous atmosphere — the corona — can be seen, will stretch from Salem, Oregon to Charleston, South Carolina. Observers outside this path will still see a partial solar eclipse where the moon covers part of the sun’s disk. A total solar eclipse presents the rare opportunity to observe the corona and chromosphere, and eclipse observations are important for understanding why sun’s atmosphere is 1 million degrees hotter than its surface.

For more information on the eclipse, where to view it and how to view it safely (wear eye protection!), visit https://eclipse2017.nasa.gov/sun.

Make sure to wear eye protection when you go out to look at the eclipse!
Credit: NASA/Bill Ingalls

 

Heads Up, Earthlings! Watch the Skies Is Getting a Reboot.


By Kevin Matyi

Want to find out more about this year’s total solar eclipse — like what totality means and why the path of totality is so much smaller than the overall eclipse? Wonder how long it takes photons from the sun to reach Earth? Curious about dark matter and what we know about it? All are possibilities in the newly revamped Watch the Skies blog.

Hello and welcome back! We will be posting content more regularly, although it will be somewhat changed from before. You can look forward to new articles explaining different astronomy topics, breaking down complex science and jargon in a way that people can understand.

We’ll kick things off this week with some solar eclipse science. So come back then to learn more about just how wonderful and strange our universe can get!

Credit: ESO/José Francisco Salgado

Kevin Matyi is a summer intern in the Office of Communications at NASA’s Marshall Space Flight Center.