Monthly Archives: May 2012

The End Of An Analog (For Now)

Posted on by .

By Autonomous Mission Control Crew D Commander Anna Fisher
May 18, 2012 – Run #3

Busy day onboard Cabot. Can’t wait to get home and take a hot shower!
GMT 17:10 Our day is off to a good start. 5 min time delay is a bummer.
GMT 21:14 Minor problem with the atrium flow but worked the mal and able to proceed.
GMT 20:06 Life onboard is good. Will have to do a 28v R&R in the future.

Mission Managers Test Wrap Up
By Megan Rosenbaum, Analog Technical Lead

Overall the test has been going really well. Many of the crew and flight controllers have expressed the same sentiments in terms of their feelings on communicating over a comm. delay. Communication does become more difficult with failures and when you need more interaction between the ground and crew, but it does not hinder their ability to work through the issues. Both sides have adapted quickly to what each more significant delay brings to the table, but overall the crew and ground are handling the delay very well.

The current baseline runs mostly incorporated current ISS operational concepts and the overall approach to this first test could be best summarized with the following statement.-MCC has the “expertise” and leads operations as it does today. Although we know we would do things differently for long time delay, the point of this is to figure out at what time delay which things break and why.

During the runs in June, the following things will be added to the overall test:

– We will use an Automated Caution and Warning System (ACAWS) to help troubleshoot system failures. The Crew will also have ACAWS during the runs which will better equip them and give them the ‘expertise’ to deal with failures.- The runs will add chat (instant messaging) capability to compliment traditional Air-to-Ground voice calls.- We will also have a new procedure viewer which will allow the ground to see where the crew is in each step of the procedure that they are executing. The new web-based Procedure Display is called WebPD.-The crew will also have planning tools (Desktop SCORE) in the mitigation runs for self scheduling as desired.

Hope to see you back here in June!

Testing Out The Time Delay

Posted on by .

Today marked the first day of the first run of a new analog mission at NASA:  Autonomous Mission Operations. The Autonomous Mission Operations – or AMO – tests look at the capability of a crewed spacecraft to plan and fly a mission with minimum support from ground.  As human exploration moves farther and farther away from Earth, the constant communication we currently enjoy with the crew of the International Space Station will become impossible. Communication from Earth to the crew will take longer and longer to reach its destination – and the same will be true of the answers the crew sends back.

The communications delays that astronauts would experience on the way to a Lagrange Point, asteroid, Mars or other distant destinations will make it necessary to change the capabilities of spacecraft, change the roles and responsibilities of ground and crew and the ways that ground and crew interact during the mission.  The purpose of the AMO project is to define what some of those changes might be.

To do so, AMO will run two series of tests this summer. The first is taking place May 15-18, and the second June 12-17. During those time frames, four different crews made up of one astronaut commander and several space shuttle or International Space Station flight controllers acting as flight engineers will run three, two-hour mission scenarios a day. Working inside the Habitat Demonstration Unit (which has been dubbed Cabot for the AMO tests) at Johnson Space Center, the crews will take turns working through the same timelines under three different simulated time delays: 1.2 seconds (what we’d experience at the second Lagrange Point), 50 seconds (the communication delay for an asteroid), and five minutes (how long it takes to say hello to Mars).

As part of the simulation, the commanders of the four crews will send blog updates throughout the course of the mission. Today’s blogger and commander (of crew A) is astronaut Rex Walheim.

 

15 May, Rex Walheim, Entry 1:
Crew is in good health and good spirits.  Today we are working IRED Cleaning, water transfer, filter changeout and camera surveys.  We are working a little slowly as we get acclimated to the habitat.  MCC is treating us well.  Food is good. 

 

15 May, Rex Walheim, Entry 2:
I was tasked with finding the ovoid.  There was a slight mutiny onboard as the other crewmembers found out what this task was and decided they wanted to be involved in this Easter egg hunt as described in the Limerick below:

There once was a crew on the Cabot
That searched for the egg of a rabbit
Inside was a sweet
Just one tiny treat 
So whoever first found it would grab it

(Mission Manager’s Note:  Stowage and Inventory on the space station is something that the crew and ground consistently monitor and manage.  In spaceflight, staying organized and keeping the proper items in stock is critical. Occasionally, we find that items have gone missing or have been tucked in a location that wasn’t accurately recorded.  To simulate this for AMO, we have a “MISSING-ITEM-SEARCH” scheduled. The crew is looking for a piece of Environmental and Life Support “equipment” that had been noted as MIA.  In reality, the missing “equipment” was a plastic egg filled with candy that we hid somewhere inside the Deep Space Habitat. We called it an ovoid canister.  The crew reports when/if they find the missing item and the stowage location to the Mission Control Center.  It’s a fun task, but mimics a real-life scenario.)

 

15 May, Rex Walheim, Entry 3:
Crew feeling well.  Procedures going well.  Almost feels like we have been here before.  50 second time delay in both directions.   It is about on the borderline where you can either press on autonomously, or wait for the ground to tell you what to do during an off nominal situation.

Ovoid found and consumed!

 

Follow along with the AMO tests via Facebook at www.facebook.com/nasa.amo.

Thoughts As I Wait On The MCC

Posted on by .

By Autonomous Mission Operations Crew C Commander Alvin Drew
May 17, 2012 – Run #1 – 50-second time delay (one way)
Busy morning so far for this “quiescent” phase of the mission.  Looks like we’ve beat up our equipment here – failed hard drives, worn out parts for the weightlifting machine and scuffed paint on the exterior of the hygiene module – nothing critical though. One day MCC will answer me immediately after I talk to them and it’s bound to startle me.

 

May 17,2012 – Run #2 – 5-minute time delay (one way)
About 60 million miles from Earth – 5 minutes time delay each way – I’d hate to pay those long distance charges.

 

May 17, 2012 – Run #3 – 50-second time delay (one way)
About 10 million miles from Earth – I can just barely pick out my house from here.

Time Delay Adds Challenge To The Routine

Posted on by .

May 16, 2012 – Test Day #2
By Todd Quasny, AMO Crew B Flight Engineer 3 (and real life MCC Flight Controller)
Today has been a very challenging day.  We have performed a total of three runs in which we perform routine activities that would need to be performed if we were on a long duration spaceflight. These activities include cleaning and replacing air filters, transferring water to our plants so they can grow into food, as well as performing a camera inspection of our space vehicle to make sure there is no damage to the outside.

For each run through of our activities, there is a delay in communications between us and Earth that is representative of what it would be like if we were conducting a mission to an asteroid or even Mars. This creates quite a challenge to perform even the most routine activities and it takes a lot of work and even some creativity to get everything done.

 

During our second run of the day, one of the crew members simulated getting sick. As Crew Medical Officer (CMO), it was my job to treat the crew member in coordination with the ground. Since we had a 5 minute communications delay at the time (so 10 minutes round trip), talking to medical professionals on the ground and consulting on the best course of action was a daunting task to say the least.  I was required to setup our ultrasound machine to take images to be analyzed by the people on the ground. Not being medically trained myself, this was really exciting to me! The capabilities that we have to handle so many diverse situations during spaceflight, both planned and unplanned, is so very cool!

 

May 16 – Test Day #2
By AMO Crew B Commander Lee Morin
Several malfunctions today with time delay to MCC of 50 seconds each way. A little easier than 300 seconds so I guess we are getting closer to Earth!

Had a problem with the water transfer, flow rate was too high so shut it off since a too-fast flow rate can damage the plumbing. Worked the issue with MCC and got the required 90% of the water transferred by using the backup plumbing and backup procedures.

Also had a problem with a power converter that created a flood of error messages when it failed. Narrowed the problem down to the 28V converter.  Power-cycling did not correct the problem. We will perform a Repair and Replace tomorrow.

With all the MALs I got behind and FE2 helped me out with the soil pH tasks.

In the earlier run we had a medical emergency, FE3 performed a medical ultrasound for abdominal pain on FE1. This put us way behind but fortunately FE1 recovered for the next run.

Runs 1 and 2 were both involving 300 seconds of delay, the delay to Mars when Mars is at its closest. It is very difficult to coordinate with MCC with such a long delay, and not have wasted time. Often you have to decide whether to press on and just tell MCC what you are intending, or to wait for them to tell you what to do.

Today we also had two educational events, one with just the commander and one with the whole crew. The audience had pretty good questions.

This has been very interesting and the habitat really does create a spaceflight-like experience.

 

Follow along in the AMO mission on Facebook: www.facebook.com/nasa.amo.

What's Your (Call) Sign?

Posted on by .

By Jeremy Frank, Autonomous Mission Operations Project Lead

Mission Control is usually portrayed in movies and television shows as filled with people intently staring at computer screens showing information about a spacecraft and the astronauts inside it. These people are referred to as flight controllers. Each of these flight controllers has responsibility for one part of the mission, or part of the spacecraft. The International Space Station flight control team consists of between 15 and 35 flight controllers, depending on what activities are taking place. Each of these people has a different responsibility. Perhaps the most famous of these flight control positions is the Flight Director; she or he has the responsibility to run the mission, and ensure that the crew is safe. Another well-known flight controller is the Capsule Communicator, or CapCom; this person’s responsibility is to communicate with the crew. Other flight controller responsibilities, while less well known, are equally important. One person is responsible for managing the orientation of the ISS and its orbit around the Earth; another is responsible for managing the activities of the crew, and so on. Each of these flight controllers have unique, and short, ‘call signs’ to uniquely identify them.
 
For the AMO project, we are conducting a much shorter ‘mission’ (2 hours, instead of 2 weeks for a typical Space Shuttle mission, or 6 months for the typical crew stay onboard the International Space Station). Our ‘spacecraft’, the Habitat Demonstration Unit, is also quite a bit simpler than either the ISS or the Space Shuttle! As a result, we created a much smaller flight control team. Even with this smaller team, we will learn a great deal about how to conduct operations in the presence of larger time delays than those experienced during any previous human spaceflight missions.
 
We opted to keep ‘traditional’ call-signs for the Flight Director and Capcom, but most of the other flight control responsibilities are a mix of traditional responsibilities. As a result, we chose to name our positions based on the names of Near-Earth Asteroids. These objects take their names from many different sources, so we had a lot of names to choose from! Our flight control call signs and positions are:
FLIGHT – Flight Director. In charge of the flight control team.
CAPCOM – Capsule Communicator. Responsible for communicating with the crew.
PSYCHE – Biomedical Engineer. Responsible for crew health and safety, hygiene, and medical consultation.
IRIS – Robotic systems. Responsible for external camera operation.
KALI – Operations Planner. Responsible for creating and managing daily activities of the crew.
JUNO – Spacecraft systems. Responsible for electrical power and life support.
VESTA – Mechanical systems. Responsible for onboard computers, data networks, avionics.
CERES – Payloads / Science. Responsible for geological laboratory and management of geology samples.
 
You can learn much more about the history of the Mission Control Center, and the job of flight controllers here.
 
 
And don’t forget to follow along with the AMO tests at www.facebook.com/nasa.amo!

Inside the Asteroid Beltway

Posted on by .

NEEMO 16 Commander Dottie (Dorothy) Metcalf-Lindenburger uses the ARGOS.By NEEMO 16 Commander Dottie Metcalf-Lindenburger

NASA’s Johnson SpaceCenter is located southeast of two highway loops that encircle the city ofHouston. The outermost highway is known as Beltway 8.  While the NEEMO 16 crew conducted training April 17-20 outside this beltway, our upcoming Junemission is focused on simulating a mission insideanother beltway – the asteroid beltway!

During training week, thecrew assembled face-to-face for the first time and learned details about NearEarth Asteroids (NEAs). Future missions to these asteroids could help us learnmore about deep-space exploration and the beginnings of our solar system.Depending on the target NEA composition, future missions could also prospectand mine resources; and develop mitigation options for NEAs threatening planetEarth.

We also learned about thespacewalk tools we will be using during the mission and then practiced usingthese tools on the Active Response Gravity Offload System (ARGOS).  After taking a tour of the SpaceExploration Vehicle (SEV), we flew the asteroid simulator.  While there are similarities betweenflying a plane, a helicopter, a shuttle, and a Space Station RoboticManipulator System (SSRMS), flying around an asteroid is a unique experience.Asteroids may have non-uniform gravity fields and erratic spin rates – not to mention the deep-spacedebris and sub-optimal lighting – all conditions that will challenge even thebest pilots!

During the rest of trainingweek, we learned about the Aquarius Laboratory and what daily life will be likeliving in the underwater habitat for (almost) two weeks. Communication delays will beincorporated to simulate living near or on an asteroid. Each day, there will be two spacewalks,and the beginning of the mission will focus on working on a NEA that astronautscould tether to, while the second half of the mission will involve submersiblesthat will simulate the SEVs and working on an asteroid that is less cohesive.

Often times we thinkabout the solar system existing beyond us or outside of our “beltway,” but inreality, we live in a dynamic solar system, where the traffic, including NEAs,continues to be better understood. NEEMO16 will provide more data on how to work and live near NEAs.

To learn more about the NEEMO 16 mission, visit: www.nasa.gov/neemo.