Research and Technology Studies (RATS) 2012: The Asteroid Out Our Window

By 2012 Research and Technology Studies (RATS) crew member Trevor Graff (Planetary Geologist)

Although we are living and working within the Multi-Mission Space Exploration Vehicle (MMSEV) located within the Building 9 hi-bay of the Johnson Space Center (JSC), you would never know it from our perspective inside the vehicle. Our view out the windows of the MMSEV is a fantastic representation of the asteroid 25143 Itokawa. Surrounded by a high-resolution video wall that displays the asteroid in front of us, we are totally immersed in this simulated environment. Here inside the MMSEV, we use the displays, controls, and views out the windows to operate the vehicle within this amazing environment. One of the other great aspect are the sounds; not only are we surrounded by the whirl of electronics and communication systems, we can hear the simulated thrusters firing outside as we maneuver the MMSEV.

What’s really remarkable is that the shape, motion, and imagery of the asteroid Itokawa that we see out our windows are all derived from actual mission data from the Hayabusa mission. This spacecraft, developed by the Japan Aerospace Exploration Agency (JAXA), launched in 2003 and arrived at Itokawa in 2005. After a few months in orbit surveying and studying the asteroid from a distance, it landed and collected samples which were returned to Earth in 2010 (for more information on the Hayabusa mission see the JAXA website). Some of those samples returned from the surface of Itokawa are now located at JSC, just a short distance from where I currently sit in the MMSEV. For its support of the Hayabusa mission, NASA will eventually receive approximately 10% of the returned samples; the first 15 particles were delivered in late 2011. This material is curated at JSC and made available to the scientific community for research (get more information on these samples and their curation at JSC).

RATS crew members see a visualization of asteroid Itokawa from the windows of the Multi-Mission Space Exploration Vehicle (MMSEV). Photo credit: NASA

RATS crew members see a visualization of asteroid Itokawa from the windows of the Multi-Mission Space Exploration Vehicle (MMSEV). Photo credit: NASA

Itokawa is a stony (or S-type) asteroid that is shaped sort of like a potato. Its length is approximately five football fields long; the actual dimensions are 535 x 294 x 209 meters. It has been described as a rubble-pile, and looking at it from our view in the MMSEV I can see why. It has a very rough rocky appearance with many large boulders perched on the surface; there are also a few areas where it appears smooth. From the data collected during the Hayabusa mission, we know that Itokawa has a low bulk density and high porosity – indicating that it is likely made up of material previously broken up by other asteroid impacts that loosely reformed to make Itokawa as we see it today.

Viewing screen showing the asteroid simulation. Photo credit: NASA

Viewing screen showing the Itokawa asteroid simulation. Photo credit: NASA

Exploring and learning about an asteroid utilizing data from a robotic precursor spacecraft, as we are during this year’s RATS test, is exactly the strategy that we would likely use to eventually send humans to an asteroid in the future. This analog test and others like it are a great step in achieving that goal. As great as this view is today within this simulation, the view and knowledge we would get from sending humans on an actual mission to an asteroid in the future will be spectacular.

Research and Technology Studies (RATS) 2012: Mission Day 1

By 2012 Research and Technology Studies (RATS) crew member David Coan, an engineer with United Space Alliance at NASA’s Johnson Space Center

Trevor and I started the day by getting sealed up in the Multi-MissionSpace Exploration Vehicle (MMSEV) to kick off the RATS 2012 simulated asteroid mission. Thevehicle looks rather small from the outside, but on the inside it seemsto be just roomy enough. Packing can be a little tricky, since there’sjust enough space crammed into every conceivable location, but we got itall in with the help of our Human Factors guru. Once settled in thecabin, we got down to the day’s mission.

Our goal was to virtually “fly” down to theasteroid and have one of us go out on a spacewalk (an Extra Vehicular Activity or EVA) to collect some rock samples. I started off flying theMMSEV, and Trevor headed out the door. To go on an EVA, Trevor used thesuitports in the back of the MMSEV, where his spacesuit was attached onthe outside. He opened the inner hatch, climbed into the suit, closedthe hatch, and then was off on his EVA.

View from inside the Multi-Mission Space Exploration Vehicle (MMSEV) as the simulated asteroid mission is running. Photo credit: NASA

View from inside the Multi-Mission Space Exploration Vehicle (MMSEV) as the simulated asteroid mission is running on video screens. Photo credit: NASA

To simulate being on EVA,Trevor headed up to the Virtual Reality Lab, where he donned goggles thatmade it appear to him as if he were near the asteroid. Having Trevorsettled on the front of the MMSEV, I then flew it down to each of thesample sites. With the virtual simulation projected out my frontwindows, it seemed as if I was really on the asteroid. Liz, Allison, andMarc helped a lot by choreographing our mission from the Deep Space Habitat.

Flying the MMSEV was great. It reacted really well to all controlinputs, and it wasn’t too difficult to precision fly near the asteroid surfacewith Trevor’s helmet just inches from the rocks. We worked like that fora couple of hours, and then switched places. Climbing into the Mark IIIspacesuit to egress for my EVA was definitely fun, even though I was onlyin the suit for a few minutes.

Having trained in the space shuttle andspace station airlock mockups, I found using the suitport to be veryquick and easy. Once we were done with our flying tasks, we settled infor our evening tasks. That involved making a freeze dried dinner,setting up our cycle and exercising, and filling out a bunch of datasheets. Exercising in the confined quarters was challenging, and wemostly stuck with using the cycle. We finished the night by configuringour bunks for sleeping, and shutting things down for the night.

Suitports on the outside of the Multi-Mission Space Exploration Vehicle (MMSEV). Photo credit: NASA

Suitport with spacesuit on the outside of the Multi-Mission Space Exploration Vehicle (MMSEV). Photo credit: NASA

Research and Technology Studies (RATS) 2012: Virtual Field Work

By 2012 Research and Technology Studies (RATS) crew member Trevor Graff (Planetary Geologist)

This is my third year as part of NASA’s Research and Technology Studies (RATS) team. In 2010, I was a member of the science team and supported the GeoLab operations in the Deep Space Habitat (DSH). I was part of the field science team in Arizona again in 2011, in addition to having the unique opportunity to train and prepare as a backup crew member. This year I’m one of the prime crew members for RATS 2012.

As a geologist, I greatly enjoy being in the field – exploring, mapping, sampling and analyzing the rocks, soil, and terrain. Geologist crew members for RATS get to apply the years of knowledge and experience we’ve gained from our field and lab work to exploration missions beyond our Earth. Our “field” environment for this year’s test is extremely unique.

Unlike many of the previous RATS tests conducted in the field in Arizona, this year we are exploring an actual asteroid. Well… sort of. Let me explain. This year’s test, conducted here at the Johnson Space Center (JSC), has us exploring the asteroid 25143 Itokawa. This is accomplished in a few very cool ways. First, our vehicle (the Generation 2A Multi-Mission Space Exploration Vehicle or MMSEV) is in front of a large simulation screen that displays the asteroid in front of us. Using data and imagery from the Japan Aerospace Exploration Agency (JAXA) Hayabusa mission – that visited, landed, and returned samples from Itokawa – the simulated asteroid looks and moves just like the real thing.

RATS crew members Marc and Trevor running an asteroid mission simulation from within the Multi-Mission Space Exploration Vehicle (MMSEV).

This extremely realistic simulation allows us to fly around, approach, and anchor to the asteroid, all while monitoring our flight controls, propellant usage and many other factors. Once we approach or anchor to the asteroid, one or more of us will perform a simulated spacewalk, also known as an EVA (Extra-Vehicular Activity). This involves two additional very cool aspects of this year’s testing.

For EVAs, we either go to the Virtual Reality Laboratory (VR Lab) or to the Active Response Gravity Offload System (ARGOS). In the VR Lab, we put on a special set of glasses that allows us to view and explore the asteroid as if we were in a space suit external to the MMSEV. From here we can fly to and sample the asteroid – getting our “hands dirty” in the virtual reality world. The other EVA option is to get strapped into ARGOS. The ARGOS facility provides the ability to offload our weight to simulate weightlessness, all while conducting our exploration and sampling of the simulated asteroid surface.

RATS crew member performs a simulated spacewalk using the ARGOS system.

RATS crew member performs a simulated spacewalk using the ARGOS system.

Analog missions like this one are vital in providing the data that will influence the development of mission architectures and technology critical to future human spaceflight. As a scientist, it’s great to be a part of helping evaluate and develop the equipment, techniques, and strategies that will eventually take us to places like asteroids and on to Mars!

NEEMO 16: Decompression Day

By aquanaut Steve Squyres (Cornell University)

It’s deco day.

Decompression is a strange experience. It happens at the end of every mission at Aquarius, and it’s happening to us as I write this.

One of the many ways in which life in Aquarius is like life in space is that you can’t just go home when you want to. In space, the reason is obvious… you’re in space. In Aquarius, the reason is less obvious, but just as important. If you simply swim up to the surface after a stay in Aquarius, you’ll get what divers call “the bends”.

Image at right: Aquanauts Steve Squyres (top bunk, Cornell University) and Kimiya Yui (bottom bunk, JAXA) during NEEMO 16 decompression.

Down here in the habitat, the atmospheric pressure is two and a half times higher than at the surface. We keep it that high to keep the water out — the pressure of the air prevents water from coming inside.

The inconvenient thing about living at that pressure, though, is that it forces a lot of nitrogen into your body. Air is mostly nitrogen, and at that pressure the amount of nitrogen that works its way into your body tissues is substantial. Come to the surface very slowly, and you’re fine… the nitrogen can leak out slowly and safely. Come up fast, though, and it’s like opening a bottle of soda… bubbles of nitrogen form in your blood. And that can be very bad news.

To ascend safely from Aquarius takes about 18 hours, which is an impractically long time to be moving up through the water column in dive gear. So what we do instead is seal the habitat up tight, and then slowly pump air out, reducing the pressure bit by bit. Over 18 hours the pressure goes slowly down to normal surface pressure.

As I write this, it’s about 10:30 PM on mission day 11. The gauge in the habitat says that we’re at a pressure equivalent to 18 feet of seawater. By 7:45 tomorrow morning, that’ll be down to zero feet, and we’ll be ready to go to the surface safely.

Except for one thing — we won’t be able to open the door.

With low air pressure inside the habitat, the enormous pressure of the seawater outside holds the door firmly shut. The only way we can get out is to bring the pressure back up to what it was before decompression… a process called “blowdown”. Blowdown is quick. The air valves are opened, the air rushes in, and before long things are back to normal. It’s noisy, too.

And then it really is time to go. Once blowdown has happened, all that nitrogen that was so carefully purged from our bodies begins to leak back in again. So at that point it’s like a fire drill… out to the wet porch, into our scuba gear, and up to a waiting dive boat in just a few minutes. It’s a strange experience.

And then we’ll be able to see the sky again, for the first time in almost two weeks. That will be strange too.

Learn more about NEEMO at www.nasa.gov/neemo.

NEEMO 16 Science: Explore, Report, Collect

 

By Aquanaut Steve Squyres (Cornell University)

Today was the coolest day of the mission for me.Today we moved from engineering to science.

Engineering and science are different things. Engineers are inventors. Theirjob is to design and build things that people can use. Engineering requiresenormous creativity, and creativity of a very special kind: creativity that iscoupled with practicality. The stuff engineers build actually has to work.

Photo of JAXA astronaut Kimya Yui collects chipping samples from a rock simulating an asteroid boulder.Image at right: Aquanaut Kimya Yui (JAXA) collects chipping samples from a rock simulating an asteroid boulder.

Scientists, on the other hand, are seekers of truth. Their job is to figure outhow the world works. Science requires intuition, knowledge that is based on thework of many other scientists, and sometimes a fair amount of luck.

What we’ve been doing at NEEMO so far has been engineering in the service ofscience. We’ve been testing out hardware that was designed and built byengineers, using the procedures they recommended to us. Our job has been tofind out what works and what doesn’t, and to relay that information back to theengineers. They build, we test, they make changes, and we test again. Someday,on an asteroid, the stuff that works best is going to be used to do science onthat asteroid. We’ve been doing the engineering work to help make that futurescience possible.

But today was different. On our EVAs today we had no engineering tests toperform. Instead, our job was to explore, to report what we found back toMission Control, and then to collect the samples they wanted us to collect.

The cool thing about this is that when we went out the door we didn’t know whatwe were going to  find. The surface of our “asteroid” isreconfigurable, and the day before some clever people had gone out there, setup some challenges for us, and had not told us what they’d done. It was up tous to figure it out.

Just like any other field scientists, we started with reconnaissance, flyingabove the surface with jetpacks and reporting back to Mission Control what wediscovered. On the spot, they came up with a science plan for us, just as wouldhappen with a crew at an asteroid. And then it was up to us to use all thetools we had at our disposal, in whatever way we thought best, to carry outthat science plan.

When Kimiya and I did this on our morning EVA, we relied a lot on our jetpacks.Dottie and Tim made more use of the translation lines and the booms to do theirsampling. Both approaches worked, but in different ways. It was reallyinteresting to debrief after dinner, and compare notes on our experiences.

But most of all, these EVAs felt like real scientific field work to me.It was a taste of how it’s really going to be to explore an asteroid and Ithink it was a big step forward for NEEMO and NASA, and something that’ll takeus a significant step closer toward doing it for real someday.

To learn more about NEEMO visit www.nasa.gov/neemo.