Chronicles from Concordia with Beth Healey – Part 1: The Induction


One of the most hostile environments for an analog is Concordia located more than 600 miles from the coastal stations of Antarctica. Many researchers use this facility to study psychology, physiology, and medicine. Some mission crewmembers perform a winter-over where they are part of research lasting the entire winter, which in Antarctica is nine months.

Beth Healey, a 28-year-old medical doctor from London, spent 14-months at the Concordia Station ending in January 2016 as a European Space Station researcher. She recently began posting reflections about the experience. Here are a few excerpts from her blog and a link to Part 1: Chronicles from Concordia.

Stepping out of the plane was like stepping out on another planet…There is a reason Concordia is often referred to as “White Mars”. There are no penguins or seals there, no native animals, let alone native people. The bright light of the 24-hour Sun reflected off the snow is blinding. My labored breathing was not out of physical exertion, but caused by the high altitude – as if we had been up on a summit of the Alps. Except for our group, the place was completely still and ghostly silent.

Part 1: The Induction:

I am 28 years old and like what many girls my age do – shopping and getting a good haircut, and I don’t mind a nice spa treatment once in a while. These features are generally not considered well suited to life in a polar environment. However, I do not see why that has to be the case (although admittedly shopping may have to wait, spas will be run on a very individual basis and a decent hairdresser may be the last of your preoccupations at -80C). It is true, I am not built for minus 80 degrees cold, but then, who is really? So why should not I, Beth Healey, go polar for real?

Cavenauts explore CAVES to prepare for spaceflight

Last light before entering the caves. From left: Ricky Arnold, Ye Guangfu, Sergei Korsakov, Pedro Duque, Jessica Meir and Aki Hoshide. Credits: ESA–V. Crobu
Last light before entering the caves. From left: Ricky Arnold, Ye Guangfu, Sergei Korsakov, Pedro Duque, Jessica Meir and Aki Hoshide. Credits: ESA–V. Crobu

Held each year, CAVES teaches astronauts to explore the underground system of the Sa Grutta caves in Sardinia, Italy, as a team, delving deep underground to perform scientific experiments as well as chart and document their activities.

CAVES stands for Cooperative Adventure for Valuing and Exercising human behaviour and performance Skills. The two-week course prepares astronauts to work safely and effectively in multicultural teams in an environment where safety is critical – in caves.

The course is run by the European Astronaut Centre to simulate spaceflight. Seasoned International Space Station astronauts as well as rookies participate in the course and share experiences while learning how to improve leadership, teamwork, decision-making and problem-solving skills.

Behavioural training

Cave training

CAVES presents the astronauts with environments and situations very similar to spaceflight, to help them transfer the learning from their caving expedition to space.

Behavioural activities are woven into the course to foster effective communication, decision-making, problem-solving, leadership and team dynamics.

An important element of the expedition is the daily debriefing, which reflects on the successes and errors of the day, on similarities with spaceflight experiences and on how to reapply successful strategies or improve by learning from mistakes.

Learning is enhanced by the presence of experienced astronauts, who share their valuable flight experience with rookies.

2016 CAVES expedition

After six days in the Sa Grutta cave, all six crew members and the support team came out from underground. The 2016 Cavenauts were a truly international crew representing five countries. They are: Ricky Arnold, NASA astronaut from Maryland; Ye Guangfu, from the Chinese Space Agency; Sergei Korsakov, test astronaut for Roscosmos; Pedro Duque, European Space Agency Astronaut from Spain; Jessica Meir, NASA astronaut from Maine; and Aki Hoshide, JAXA astronaut from Tokyo.

Japanese commander Aki Hoshide on day 1 underground. Credits: ESA–V. Crobu

Japanese commander Aki Hoshide on day 1 underground. Credits: ESA–V. Crobu


On day 0, we entered the cave in the evening and moved to the “Witch’s Hat”, only a few hundred meters from the entrance. The next day (Day 1) was our first large progression to our main campsite through the Via Ferrata. The progression was technical, using all the tools we learnt to use during our training. We set up our tents, kitchen and toilet. The main campsite was to be our main home for the next few days.

On Day 2, we headed out to the 4th Wind Branch, which extended north from our campsite for approximately 1.1 km till the “Baikal Lake”.  The main objective of the day was to find an advanced campsite past “Baikal Lake”, which needed to have a water source close by, a good place to sleep (flat and soft, i.e. not on rocks!), and communication with the main campsite via radio. Once we found a suitable location, we returned to our main campsite, and returned to the advanced campsite the next day (Day 3). On the way we did more science and a survey of the area which we continued on Day 4 to explore further than our advanced campsite.

Exploring past lakes on day 5. Credits: ESA–V. Crobu

Exploring past lakes on day 5. Credits: ESA–V. Crobu

On Day 5, we started the trip in a different direction. From the main campsite we went south through the Lake’s Branch to Jericho Wall, about 2.4 km through lakes in wetsuits (very different from the first four days!). We found some life forms (!) in Monviso, and did some surveying at Jericho Wall to help make a more accurate map of the area. Day 6 was when we had to pack our gear and return to the ground, where we saw bright sunlight, smelled nature (other than rocks, sands, and ourselves), and were greeted familiar faces waiting for us just outside the cave entrance.

We have fulfilled our objectives to be safe, have fun, work together as a team and cover our science, survey and photogrammetry objectives. It was a privilege to have this unique opportunity that only a handful of people have experienced, and we are grateful for all who supported us throughout the expedition.

The CAVES 2016 expedition with a truly international crew from five different countries is now complete. But the underground adventure will continue…

To watch video blogs from each cavenaut on this expedition, click here.


What Would We Mine in Space?

NASA is actively planning to expand the horizons of human space exploration, and with the Space Launch System and the Orion Multi-Purpose Crew Vehicle, humans will soon have the ability travel beyond low Earth orbit. But before we send humans to explore deep-space destinations — like near-Earth asteroids, the moon, and Mars and its moons — we need to demonstrate and refine capabilities here on Earth.

Image at right: The RESOLVE experiment package atop CSA’s Artemis Jr. Rover.

Each potential destination contains a vast spectrum of resources that space architects, engineers, and mission planners can work into spacecraft designs and operations to make a mission more safe, cost-effective, and efficient. Harnessing local resources is a practice called In-Situ Resource Utilization (ISRU), and it offers very attractive benefits for human space exploration, including mass reduction for the payload – and therefore cost reduction, since the number of launches will be fewer and size of launch vehicles could be smaller. ISRU also reduces risk for crew members, increases mission flexibility, and encourages commercialization of space by blazing a trail and demonstrating a market that is waiting to be cornered.

But What Would We Mine at Each Destination?


The Moon

Earth’s moon offers four major resources. The regolith, or layer of loose soil overlying rock beds, has a rich mixture of oxides and metals. The lack of atmosphere on the moon exposes the regolith to solar wind volatiles, including hydrogen, helium, and carbon. And recent robotic missions have proven that the shadowed polar craters have water-ice. NASA and its partners have already demonstrated the technology and proven the capabilities necessary to harness all of these resources for sustainable human exploration of the lunar surface.


Near-Earth asteroids present a unique challenge for space explorers. There are several types and classes of asteroids and the compositions vary greatly; some are very iron-rich, with magnesium, nickel, water, rare platinum groups, and varieties of silicates, while others will be rich with oxygen, water, and other volatiles. The rotation and spin rates can be erratic and unpredictable, making anchoring and mining precarious for humans. During the past two NEEMO analog missions, astronauts practiced different navigation and translation techniques for asteroid exploration, including human-robotic sampling and translation techniques in which the astronauts could deploy robotic systems to mine the asteroid resources.


The red planet’s atmosphere contains 95.5% carbon dioxide, 2.7% nitrogen, and 1.6% argon. We know from the Spirit and Opportunity rovers that water concentration varies by location, but we have proof of significant ice beneath the regolith at the poles. Mars also has oxides and metals in the soil, making it yet another resource-rich destination that we hope one day will be home to humans.

Could Planetary Resources Really Sustain Humans Away from Earth?

Robotic precursor missions can help prepare an extraterrestrial destination for a long-duration human visit. A system the size of RESOLVE, mounted on a rover like the Canadian Space Agency’s (CSA) Artemis Jr., would be used to locate resources that could be used by the crew for life support, protection, power, and propulsion.  With the information, another small rover and processing plant can be delivered to mine an area less than 1 inch deep the size of a soccer field for one year prior to humans arriving in order to have enough initial resources to sustain a crew of astronauts when they arrive. If we had a shorter precursor timeframe, the robotic hardware would have to be much bigger in order to produce and store an initial repository of consumables for when the astronauts arrive. Another advantage of early robotic deployment, also known as a robotic precursor mission, is that it enables us to do more science experiments to learn about the area before the astronauts get there.

To learn more about In-Situ Resource Utilization, visit

From the ARC Science Back Room

By Kimberly Ennico, July 20, 2012, 43rd anniversary of “One small step, One giant leap”
I write this after the conclusion of our multi-day field demo of the RESOLVE payload. Prior to any activity, as with all organized operational tests, a clear set of success criteria is identified. RESOLVE, having being defined by NASA’s exploration and technology divisions, has the following goals:
CAT 1 Objectives (Mandatory):
  • Travel at least 100m on-site to map the horizontal distribution of volatiles
CAT 2 Objectives (Highly Desirable):
  • Perform at least 1 coring operation.  Process all regolith in the drill system acquired during the coring operation
  • Perform at least 1 water droplet demo during volatile analysis.
CAT 3 Objectives (Desirable):
  • Map the horizontal distribution of volatiles over a point to point distance of 500m.
    • Surface exploration objective is 1km
  • Perform coring operations and process regolith at a minimum of 3 locations.
  • Volatile analysis will be performed on at least 4 segments from each core to achieve a vertical resolution of 25cm or better.
  • Perform a minimum of 3 augering (drilling) operations
    • Surface exploration objective is 6 augers
  • Perform at least 2 total water droplet demos.  Perform 1 in conjunction with hydrogen reduction and perform 1 during low temperature volatile analysis.
CAT 4 Objectives (Goals):
  • Perform 2 coring operations separated by at least 500m straight line distance
    • Surface exploration is 1km
  • Travel 3km total regardless of direction
  • Travel directly to local areas of interest associated with possible retention of hydrogen
  • Process regolith from 5 cores
  • Perform hardware activities that can be used to further develop surface exploration technologies
At first glance, they are pretty much very operations based: 100 m (328 ft) here, 1 km (3,281 ft) there, three locations, three auger (drilling) ops, etc. They were the driving forces of this demo, no pun intended. Our main focus was to demonstrate the technology and the operations. However, as each day went on, you could hear on the voice loop the engineers asking more and more about what we scientists – those on site or in our “Ames science backroom” – were discussing and observing with each new scan, spectra, and image. Also, we actually found ourselves demonstrating science in this activity. That was the whole beauty of this project: science enabling exploration and exploration enabling science. Each team member, excited about roles played by others, united by our shared excitement in the concept of pushing our ability to explore beyond our home planet.
At the end of our field demo, we clocked 1,140 m (3,740 ft.) total in-simulation roving distance, 475 m (1,558 ft.) separation travel distance between hot spots, with total separation of traverses greater than 500 m. (1,640 ft.) We located nine hot spots, completed four auger operations, four drill operations, and four core segment transfers to the crucible (oven) for volatile analysis and characterization. We had seven remote operations centers plugged in to our central system. We logged 185,918 rover positions, collected 227,880 near-infrared spectra, 136,273 neutron spectrometer measurements, 139,703 drill measurements, 3,630 image data products, and wrote 2,446 console log entries.
Comparative band-depths show water abundance
(Left) Band-depth (a measurement of abundance) for a water band (at 1.5 microns) plotted for the whole simulation. Most of the water detected this way turned out to be “grass” in the spectrometer’s field of view, but we did rove over some pretty “dry areas.” Variety indeed. The red line shows our traverse path on July 19. (Right) Counts for the neutron spectrometer for the simulation. This aerial photo shows how we traversed over a range of geological features, a mixture of glacial (old outwash) and volcanic (olivine basalt) deposits. Image credit: NASA
While some of the ISRU technology demonstrations focused on pre-arranged drill tubes filled with pre-planned test materials, we were particularly excited to drill into the native tephra. Its saturated soil (up to 20%) is more consistent with the Mars surface rather than the lunar surface. If successful, this test also would show practical drill performance parameters for future Mars drill missions. The approved procedures allowed us to core down to a maximum of 50 cm (19.6 inches). We reached 45 cm in about 56 minutes. Then, instead of putting the sample into the oven, the core tube was “tapped” out onto the surface while the rover moved forward to lay out the sample for evaluation by the near infrared and neutron spectrometers. This was a new procedure developed jointly by the rover, drill, and science teams, which demonstrated a new way of extracting material and quickly evaluating it.
CSA's Artemis Jr. rover with DESTIN drill
Artemis Jr rover DESTIN (drill) acquiring sample from native soil. Image credit: NASA
Four images show the ARC

The Ames science backroom team, clockwise from top left: Erin Fritzler, project manager; Bob McMurray, system engineer; Kayla La France, intern; Ted Roush, scientist; Carol Stoker standing, scientist; and Jen Heldmann, scientist. Not shown: Stephanie Morse, system engineer; Josh Benton, electrical engineer; and me – Kim Ennico, scientist. With our team of nine people we staffed three consoles in two shifts, for eight-days.

Picture of two ARC team members at their consoles in Hawaii
Ames science team members in Hawaii. They were our main interface for the Ames backroom to the Flight, Rover and Drill teams, whose leads were in Hawaii, but whose support teams were at KSC in Florida, JSC in Texas, and CSA in Canada. Left to right: Rick Elphic, Real Time Science and Tony Colaprete, Spec. Photo by Matt Deans.

To end on a fun note: mid-way through the sim, I got my updated console request so I could monitor the neutron spectrometer and near infrared spectrometer simultaneously to look for correlations (this combination of techniques had never been done before). I spotted this one (image below) as we were roving about. Camera imagery had been down, so we were “in the dark” from visual clues. Upon seeing the two signals, I called out a strong hydrogen and water signal to the Science team in Hawaii over the voice loop.

Screengrab of one of my console screens. Top trace is the neutron spectrometer Sn counts showing a modest signal. Bottom traces are two different near-infrared water spectral regions that showed changes at the same time.
And it turns out we roved over this, a trench of water and a piece of aluminum foil reflecting the clear blue Hawaiian skies. The neutron spectrometer is designed to detect hydrogen at depth, whereas our near infrared spectrometer is more suited for surface water.
Image of a test target on the soil
A test target along traverse path for July 19. Image credit: NASA

This target, like others we traversed over the past week (buried pieces of plastic, netting, etc.) had been dug out in the wee hours of the morning by other members of the RESOLVE operations team. Good way to get a few hours exercise after being cooped up behind monitors!
So what’s next? A “lessons learned” exercise is called out for next week. The different teams wrote down our learning points daily when they were fresh in our minds. We will review them as a team and move forward with the next steps – building a version that works in a vacuum. And our Ames backroom science team has identified a few science papers to write. We are excited!
For more information about the In-Situ Resource Utilization analog field test and the RESOLVE experiment package, visit

Camping vs. Settling

NASA is currently building the capabilities for long-term, deep-space human exploration. We know from experience on the International Space Station (ISS) that harnessing and recycling space resources increases mission flexibility, reduces payload mass requirements, and reduces risk to a crew who might otherwise be dependent on a cargo delivery. The ISS Water Recycling System, for instance, leverages local resources by recycling as much water as possible. It recycles urine from waste systems and even moisture from the air. This system is vital to continual operations because the cost of transporting all of the water needed for consumption and waste management is prohibitively expensive.

Image at right: Sitting atop the Canadian Space Agency’s Artemis Jr. rover, RESOLVE is an experiment package designed to find, characterize and map the presence of ice and other volatiles in almost permanently shadowed areas at the lunar poles.

Here in Hawaii, during NASA’s In-Situ Resource Utilization demonstrations, we are simulating a lunar robotic mission with the RESOLVE (Regolith and Environment Science and Oxygen and Lunar Volatiles Extraction) experiment package. It is designed to find, characterize and map the presence of ice and other volatiles on the moon. The last few days, the RESOLVE package, mounted on a Canadian Space Agency rover, has traversed the volcanic deposits of Hawaii’s Big Island and is using several science instruments to locate volatiles in the regolith, drill for samples, then characterize and separate the samples for processing.

Bill Larson, ISRU Technology Development Project Manager, explains how ISRU is a vital component of long-duration missions, offering the analogy of “camping vs. settling” at a destination.

For instance, when you’re camping, you bring canned and perishable food, bottled water, other temporary consumables, and batteries for your flashlight. When you are settling at a new location, you are likely to bring some perishables to sustain you in the beginning, but you’ll also bring buckets to gather fresh water, seeds for a garden, spices to flavor the food you’ll grow, and, instead of batteries, a reusable method of power generation.

In this analogy, you don’t need ISRU for a camping trip, but if you are going to settle a any destination in space and be productive, you need to be able to harness local resources to generate gases and metals for human consumption, building materials, and propellants.

For more information about In-Situ Resource Utilization, visit

NEEMO 16: Decompression Day

By aquanaut Steve Squyres (Cornell University)

It’s deco day.

Decompression is a strange experience. It happens at the end of every mission at Aquarius, and it’s happening to us as I write this.

One of the many ways in which life in Aquarius is like life in space is that you can’t just go home when you want to. In space, the reason is obvious… you’re in space. In Aquarius, the reason is less obvious, but just as important. If you simply swim up to the surface after a stay in Aquarius, you’ll get what divers call “the bends”.

Image at right: Aquanauts Steve Squyres (top bunk, Cornell University) and Kimiya Yui (bottom bunk, JAXA) during NEEMO 16 decompression.

Down here in the habitat, the atmospheric pressure is two and a half times higher than at the surface. We keep it that high to keep the water out — the pressure of the air prevents water from coming inside.

The inconvenient thing about living at that pressure, though, is that it forces a lot of nitrogen into your body. Air is mostly nitrogen, and at that pressure the amount of nitrogen that works its way into your body tissues is substantial. Come to the surface very slowly, and you’re fine… the nitrogen can leak out slowly and safely. Come up fast, though, and it’s like opening a bottle of soda… bubbles of nitrogen form in your blood. And that can be very bad news.

To ascend safely from Aquarius takes about 18 hours, which is an impractically long time to be moving up through the water column in dive gear. So what we do instead is seal the habitat up tight, and then slowly pump air out, reducing the pressure bit by bit. Over 18 hours the pressure goes slowly down to normal surface pressure.

As I write this, it’s about 10:30 PM on mission day 11. The gauge in the habitat says that we’re at a pressure equivalent to 18 feet of seawater. By 7:45 tomorrow morning, that’ll be down to zero feet, and we’ll be ready to go to the surface safely.

Except for one thing — we won’t be able to open the door.

With low air pressure inside the habitat, the enormous pressure of the seawater outside holds the door firmly shut. The only way we can get out is to bring the pressure back up to what it was before decompression… a process called “blowdown”. Blowdown is quick. The air valves are opened, the air rushes in, and before long things are back to normal. It’s noisy, too.

And then it really is time to go. Once blowdown has happened, all that nitrogen that was so carefully purged from our bodies begins to leak back in again. So at that point it’s like a fire drill… out to the wet porch, into our scuba gear, and up to a waiting dive boat in just a few minutes. It’s a strange experience.

And then we’ll be able to see the sky again, for the first time in almost two weeks. That will be strange too.

Learn more about NEEMO at

NEEMO 16 Science: Explore, Report, Collect


By Aquanaut Steve Squyres (Cornell University)

Today was the coolest day of the mission for me.Today we moved from engineering to science.

Engineering and science are different things. Engineers are inventors. Theirjob is to design and build things that people can use. Engineering requiresenormous creativity, and creativity of a very special kind: creativity that iscoupled with practicality. The stuff engineers build actually has to work.

Photo of JAXA astronaut Kimya Yui collects chipping samples from a rock simulating an asteroid boulder.Image at right: Aquanaut Kimya Yui (JAXA) collects chipping samples from a rock simulating an asteroid boulder.

Scientists, on the other hand, are seekers of truth. Their job is to figure outhow the world works. Science requires intuition, knowledge that is based on thework of many other scientists, and sometimes a fair amount of luck.

What we’ve been doing at NEEMO so far has been engineering in the service ofscience. We’ve been testing out hardware that was designed and built byengineers, using the procedures they recommended to us. Our job has been tofind out what works and what doesn’t, and to relay that information back to theengineers. They build, we test, they make changes, and we test again. Someday,on an asteroid, the stuff that works best is going to be used to do science onthat asteroid. We’ve been doing the engineering work to help make that futurescience possible.

But today was different. On our EVAs today we had no engineering tests toperform. Instead, our job was to explore, to report what we found back toMission Control, and then to collect the samples they wanted us to collect.

The cool thing about this is that when we went out the door we didn’t know whatwe were going to  find. The surface of our “asteroid” isreconfigurable, and the day before some clever people had gone out there, setup some challenges for us, and had not told us what they’d done. It was up tous to figure it out.

Just like any other field scientists, we started with reconnaissance, flyingabove the surface with jetpacks and reporting back to Mission Control what wediscovered. On the spot, they came up with a science plan for us, just as wouldhappen with a crew at an asteroid. And then it was up to us to use all thetools we had at our disposal, in whatever way we thought best, to carry outthat science plan.

When Kimiya and I did this on our morning EVA, we relied a lot on our jetpacks.Dottie and Tim made more use of the translation lines and the booms to do theirsampling. Both approaches worked, but in different ways. It was reallyinteresting to debrief after dinner, and compare notes on our experiences.

But most of all, these EVAs felt like real scientific field work to me.It was a taste of how it’s really going to be to explore an asteroid and Ithink it was a big step forward for NEEMO and NASA, and something that’ll takeus a significant step closer toward doing it for real someday.

To learn more about NEEMO visit

NEEMO 16: Pitching and Rolling Topside

By Aquanaut Steve Squyres (Cornell University)

Onething we haven’t thought about too much on this NEEMO mission has been theweather and sea conditions. The reason is that they’ve mostly been so good.

Photo showing visibility during NEEMO 16Image at right: Squyres shows the underwater visibility with this image.

OnNEEMO 15, it was another story. The start of that mission was delayed by atropical storm, and we came out of the water early because of an approachinghurricane. The beautiful waters of the Florida Keys, which are known to diversfor their clarity, were a hazy green murk for most of the mission. We got thejob done in the time we had, but it wasn’t always pretty. Sometimes we actuallygot lost out there, trying to find our way through the fog.

Formost of NEEMO 16, conditions have been beautiful. You can see it in thepictures that have been posted online: clear water and good diving.

Well…that has changed a bit in the past 24 hours. I took a picture out the bunk roomwindow right before Tim and I headed out for our afternoon EVA, and you can seewhat it looks like… nothing but blue fog. The visibility is maybe 15 feetnow, and I think that’s being generous.

Imageat right: Aquanaut Steve Squyres in the wet porch of the Aquarius habitat.

Badvis is only part of the story. The real issue is the strong winds and big wavestopside. We can’t really see that from down here, but we can feel it. Thenumbers we’ve been hearing are 25-knot winds and 6 to 8-foot seas… seriousbusiness in a small boat. Down here we feel the “surge” a bit as thehabitat shifts position slightly, and the popping of our ears as each big wavepasses overhead. Up top, though, our hard-working support divers are pitchingand rolling in big waves for hours at a time, needing all the care they canmuster just to get in and out of their dive boats. Difficult stuff.

Thegood news is that the bad conditions aren’t keeping us from getting the jobdone. We’ve been down here more than a week, and I think we could almost findour way around out there with our eyes closed now if we had to. The surge movesus around a bit during our simulated spacewalks, but not enough to make adifference. If conditions had been like this right out of the gate, I think itwould have been a bit of a challenge. But with nine days under our belts, we’reable to keep on keepin’ on.

I’m still hoping thingswill get better tomorrow, though!

Learn more about NEEMO at

NEEMO 16: Talent and Dedication

By NEEMO 16 Commander Dottie Metcalf-Lindenburger (NASA Astronaut)

The NEEMO 16 Team…There is no “I” in team

What does it take to pull off a 12-day mission, looking at the best ways to work and explore at an asteroid, while dealing with simulated communication time delays between the crew and Mission Control?
I don’t know exact number, but it takes many talented and dedicated people.  

Mobile Mission Control Center team

Image at right: Mission control in Key Largo, Fla.

Who are those people?  Let’s start back on shore in Key Largo, where there are two teams making sure everything comes together. One team is the Mobile Mission Control Center.  They direct the day, providing timelines for when events happen and support for all activities. 

Also back in Key Largo, we have the Aquarius Reef Base (ARB) team. They run the habitat, keeping it going 24/7.  They also provide the training and logistical support for the mission.  From their team comes two talented members, the Habitat Technicians, who live with the crew, dive with the crew, and pull off numerous feats of amazingness.  

Daily, the Liberty Star and its divers launch the submersibles and provide diving support for our breathing umbilicals. Additionally, ARB sends out boats with dive control and potting support.  Potting is literally large metal vessels that bring down food and supplies and take away trash.  NASA has a boat that brings out our scientists, spacewalk specialists, and tool designers.  
Down below, inside the habitat, is our crew of six.  We execute the mission and provide real-time input.
Each of these teams is essential; each is made of people who see the bigger picture of their role.

To learn more about NEEMO, visit

Dr. Love's Underwater Blog: Mobility and Stability with DeepWorkers

By Dr. Stan Love (NASA astronaut)

Photo of Stan Love preparing for a DeepWorker comm checkImage at right: Astronaut/DeepWorker pilot Dr. Stan Love prepares for a communications check in the DeepWorker submersible.

For the previous fewdays at NEEMO, the aquanaut crew has been moving around, taking geologic samples,and deploying science instruments as if they were astronauts in space suitsexploring a near-Earth asteroid. The buoyancy of the sea water counteractstheir body weight and makes them effectively weightless, as they would be neara small asteroid with very little gravitational pull. But it’s hard to workthat way. With no place to stand, it can take a lot of effort just to keep yourbody stable, and any work you do with your hands is clumsy and inefficient.

But now that NEEMO’smarine science dives are completed, the DeepWorker submersibles are availableto work jointly with the aquanauts. The subs provide two tremendous advantagesto our “spacewalkers”: mobility and stability. Instead of theaquanauts having to move from one place to another by going hand-over-handalong a rope, they can just ride along with the submarine. Instead of the aquanautshaving to fight to keep their body stable with one hand while trying to douseful work with the other, they can clip their feet into a “footrestraint” attached to the front of the sub and have a solid place tostand, plus the freedom to work with both hands. Part of our work at NEEMO thisyear is to quantitatively measure the time and effort it takes to do a widevariety of spacewalking tasks both with and without help from the subs.

So Saturday morning,our first pair of sub pilots, Serena and Bill, got in the water and drove theirvehicles down to a sand patch near Aquarius. Divers hooked communication linesto their sub so they could talk and listen on the same channels as theaquanauts. We had done some preliminary testing on the communication and ithadn’t gone well. But that day, to everyone’s immense delight, thecommunication worked perfectly! Serena and Bill did some test work with theaquanauts, and then returned to the surface.

Photo of aquanaut and DeepWorker sub piloted by astronaut Mike GernhardtImage at right: An aquanaut adjusts umbilicals as astronaut/DeepWorker pilot Mike Gernhardt waits in the background.

Mike Gernhardt and Iwere the sub pilots for the afternoon shift. The plan was for Mike to do thefirst set of timed and scored tasks with the aquanauts while I observed andlistened. But things did not turn out that way, as often happens in operationslike NEEMO. Exploration is interesting in part because you do not know what youwill find. And work in places like space, or the sea, is interesting becauseenvironmental conditions like space radiation, weather, or sea state cansuddenly change the operation in ways that are hard to foresee.

Out on Liberty Star, thelarge and beautiful ship that has come to support sub operations for the restof the mission, my sub was the first to go in the water. The crane hoisted meoff the deck and into the water and the lift hook disengaged. Immediately Iheard the voice of Jeff Heaton, the dive supervisor, on the radio: “Engagethrusters and move away from the ship!” The next second, the sub cabinjolted hard and tilted sharply, and I found myself wedged beneath the ship’sfantail between the rudders and the propellers (which had been turned offduring sub launching). I enabled the thrusters and gave full throttle in alldirections but the sub did not budge. Under the water my VHF radio could nottransmit or receive, and my location under the back of the ship was not accessibleto the through-water communication system we use while the subs are workingnear the sea floor. So I was on my own.

What had happened wasthat my sub had been immediately caught by a strong current and pinned againstthe ship. With no way to escape on thrusters, and the swell continuing to bangthe sub against the hull, the only option was to do down. I flooded the sub’ssoft ballast tank, which seemed to take rather a long time, and finally droppeddown away from the very bad spot I’d been in. Once below the ship I got apartial transmission on the through-water comm telling me to descend to thebottom and hold there. This I did, putting in some forward thrust as well sothat the current would not take me far from the ship.

I reached bottom onmixed sand and coral in about 90 feet of water and stayed there. The comm wasvery bad. Occasionally a call would make it through, but I wasn’t hearing muchand most of my transmissions went unanswered. I was able to tell Topside that Icould see no damage to the sub and that my cabin atmosphere was safe. Theyresponded with a recommendation to stay on bottom while they prepared torecover me. So I sat there and waited. I made test calls now and then,sometimes receiving an answer.

The current strengthenedeven more and began to drag the sub along the bottom. I still didn’t want todrift away from the ship, so I maneuvered over to a rock and let the currenthold me in place against it.

Nuytco Research, thecompany that owns the subs, has worked out emergency procedures for sub pilotsto carry out in case anything goes wrong on their flights. One of those casesis a loss of communication. For most dives, the instruction for the pilot is tostart a clock the first time an expected call is missed, and if an hour passeswith no communication they should bring the sub back to the surface. For ouroperation, since we were always going to be near the ship and in shallow waterand since communication was central to our job, we had agreed on a limit of 15minutes.

I nearly got through acouple of 15-minute intervals, but then a partial call would make it throughand I reset the clock. While waiting I watched the fish moving around the sub.A spotted eagle ray, black with vivid white spots, swam by. I got out my cameraand took a few pictures.

Finally thecommunication with the ship stopped entirely. I waited another 15 minutes, thengot on the thrusters. The current was still strong enough to make it hard todisengage from the rock I was next to. But the sub did come free, and I droveit away from the bottom. I kept an upward eye to make darn sure I didn’t comeup under the ship!

I needn’t have worried.The sub surfaced about fifty yards from the Liberty Star. Immediately Jeff cameover the VHF radio and guided me back to the crane hook. Recovery was swift andefficient, and soon I was back on deck enjoying the breeze and asking whetherI’d made the right decisions. Everyone assured me that I had, and Jeffcommended me on having actually read and followed the lost-comm procedure.Evidently not everyone does that. He also said that from their perspective,they had put me in the water and I had disappeared instantly. I’m glad I wasn’tthe only one who felt that way!

While Jeff and I werechatting, Mike from Nuytco came up and handed me a stubby, heavy, black plasticcylinder with a big blue-smeared bite taken off the edge of it. “Here’syour through-water comm transducer. Do you want to keep it?” Yes, I did. Iwill take it home and put it in my curio cabinet as a memento of an excitingday in the submarine. That ‘ducer sits high on the back of the sub, behind thepilot’s head, and it acts as the “antenna” for the system. If it’sbroken, no communication occurs. The blue color was bottom paint from theLiberty Star. Evidently the ‘ducer had taken the brunt of my impact with theship. That explained the bad communication.

After that, the rest ofthe day was kind of anticlimactic. The Nuytco crew quickly installed a newthrough-water comm ‘ducer on my sub and made sure it was fit for duty. I dranka bottle of Gatorade to replace the fluid I’d lost from sweat (both fromtemperature and stress, no doubt), then hopped back in the cockpit to do our now-badly-delayedmission to the habitat, this time with both subs and no mishaps. We returned toshore at dusk, with take-out dinner plates kindly provided by the LibertyStar’s excellent cook. Another day thoroughly seized.

Learn more about NEEMO at