NASA Stacks First Artemis II Segment on Mobile Launcher

Engineers and technicians with the Exploration Ground Systems Program stack the first Moon rocket segment – the left aft assembly for the Artemis II SLS (Space Launch System) solid rocket booster onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Wednesday, Nov. 20, 2024.
Engineers and technicians with the Exploration Ground Systems Program stack the first Moon rocket segment – the left aft assembly for the Artemis II SLS (Space Launch System) solid rocket booster onto mobile launcher 1 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Wednesday, Nov. 20, 2024. Photo credit: NASA/Glenn Benson

Engineers and technicians inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida stacked the first segment of the Artemis II SLS (Space Launch System) rocket boosters onto mobile launcher 1.

Comprising 10 segments total – five segments for each booster – the SLS solid rocket boosters arrived via train to NASA Kennedy in September 2023 from Northrop Grumman’s manufacturing facility in Utah. The booster segments underwent processing in the spaceport’s Rotation, Processing and Surge Facility before being transferred to the NASA’s iconic VAB for stacking operations.

Technicians inside the 525-foot-tall facility used an overhead crane to lift the left aft assembly onto the mobile launcher. Up next, workers will install the right aft assembly, placing it carefully onto the 380-foot-tall structure used to process, assemble, and launch the SLS rocket and Orion spacecraft.

The first components of the Artemis II Moon rocket to be stacked, the solid rocket boosters will help support the remaining rocket segments and the Orion spacecraft during final assembly. At launch, the 177-foot-tall twin solid rocket boosters provide more than 75 percent of the total SLS thrust during liftoff from NASA Kennedy’s Launch Pad 39B.

NASA Prepares for Artemis II Rocket Integration

Image shows booster segments being stacked inside Vehicle Assembly Building at NASA's Kennedy Space Center
Engineers and technicians with the Exploration Ground Systems Program prepare to transfer one of the aft assemblies of the SLS (Space Launch System) solid rocket boosters for the Artemis II mission with an overhead crane inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida on Wednesday, Nov. 13, 2024. Photo credit: NASA/Kim Shiflett

Since the mobile launcher returned in October from Launch Pad 39B to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida, work has been underway for upcoming stacking operations of NASA’s SLS (Space Launch System) Moon rocket.

To prepare for launch, the mobile launcher is undergoing optical scans, system checkouts, and umbilical refurbishment, including installation of the aft skirt electrical umbilicals.

The booster segments soon will move from the Rotation, Processing and Surge Facility to the VAB via a transporter. The aft assemblies, or bottom portions of the five segment boosters, will be situated in the facility’s transfer aisle then lifted atop the mobile launcher in High Bay 3.

The examinations and preparations of the mobile launcher and rocket elements lay the groundwork for Artemis II crewed test flight around the Moon.

NASA’s Mobile Launcher Back at Vehicle Assembly Building

NASA’s mobile launcher 1 atop the spaceport’s crawler is transported inside the agency’s Vehicle Assembly Building at Kennedy Space Center in Florida ahead of integration of the Artemis II Moon rocket on Friday, Oct. 4, 2024. The mobile launcher will be used to assemble, process, and launch NASA’s SLS (Space Launch Systems) and Orion spacecraft to the Moon and beyond. Photo credit: NASA/Ben Smegelsky

After spending several months undergoing integrated testing and upgrades at Launch Complex 39B at NASA’s Kennedy Space Center, the agency’s mobile launcher 1 is transported inside the Vehicle Assembly Building in preparation for integration of the Artemis II Moon rocket.

The 4.2-mile trek from Launch Pad 39B to the Vehicle Assembly Building along the crawlerway normally takes eight to 12 hours atop NASA’s crawler-transporter 2, though teams paused the roll operations several times as planned to ensure the operation teams had scheduled breaks and rest. The operation resumed at 1:41 a.m. EDT, Friday, Oct. 4.

Standing 380 feet tall, the mobile launcher – which will be used to assemble, process, and launch the SLS (Space Launch System) rocket and Orion spacecraft – contains all the connection lines – known as umbilicals – and ground support equipment that will provide the rocket and spacecraft with the power, communications, fuel, and coolant necessary for launch. This will be the mobile launcher’s last solo trek out to the launch pad ahead of integration of the Artemis Moon rocket, and it will remain inside the Vehicle Assembly Building until it is ready to return to the pad with the rocket for a tanking test.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.

NASA’s Mobile Launcher Rolls Ahead of Artemis II Preparation

Teams with NASA’s Exploration Ground Systems Program at the agency’s Kennedy Space Center in Florida prepare to move mobile launcher 1 atop the agency’s crawler-transporter 2 from Launch Complex 39B to the Vehicle Assembly Building on Tuesday, Oct. 1, 2024. The crawler transporter recently reached 2,500 miles traveling to the launch pad since its construction in 1965. The mobile launcher will be used to assemble, process, and launch NASA’s SLS (Space Launch Systems) and Orion spacecraft to the Moon and beyond. Photo Credit: NASA/Kim Shiflett

NASA rolled closer to integrating elements of the Artemis II Moon rocket together as teams with the agency’s Exploration Ground Systems Program at Kennedy Space Center in Florida began moving the mobile launcher 1 from Launch Complex 39B along a 4.2 mile stretch back to the Vehicle Assembly Building. First motion of the mobile launcher, atop NASA’s crawler-transporter 2, occurred at 12:09 a.m. EDT Thursday, Oct. 3.

Teams rolled the mobile launcher out to Kennedy’s Pad 39B in August 2023 for upgrades and a series of ground demonstration tests in preparation for NASA’s Artemis II mission. These preparations ranged from a launch day demonstration for the crew, closeout crew, and the pad rescue team, to testing the emergency egress system, water flow system, and the new liquid hydrogen sphere at the launch pad.

On its way to transport the mobile launcher back from the pad, NASA’s crawler-transporter 2 also achieved a milestone nearly 60 years in the making. Already designated by Guinness World Records as the heaviest self-powered vehicle – larger than a baseball infield and weighing approximately 6.65 million pounds – the crawler reached 2,500 miles traveled since its construction in 1965.

The mobile launcher is expected to arrive outside the Vehicle Assembly Building around 10 a.m. Thursday, Oct.3, before the Exploration Ground Systems teams move it into High Bay 3 on Friday, Oct.4.

Follow the livestream of the mobile launcher on the move.

 

 

 

 

Orion’s Artemis III European Service Module Joined with Crew Module Adapter

Teams began connecting the European Service Module 3 to the crew module adapter.
Teams began connecting the European Service Module 3 to the crew module adapter on Tuesday, Sept. 24, 2024, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The integrated hardware will provide propulsion, thermal control, and electrical power for NASA’s Orion spacecraft set to carry four NASA astronauts to the lunar South Pole region of the Moon for the agency’s Artemis III campaign. Photo credit: NASA/Kim Shiflett

Teams have joined the Artemis III European Service Module and crew module adapter for NASA’s Orion spacecraft inside the Neil A. Armstrong Operations and Checkout (O&C) Building at NASA’s Kennedy Space Center in Florida, following the completion of the Integration Readiness Review on Sept. 17.

The ESA (European Space Agency)-provided European Service Module is assembled by Airbus in Bremen, Germany, from parts made in 10 European countries and the United States. It acts as the driving force behind the Orion spacecraft for deep space exploration, providing essential propulsion, thermal control, and electrical power. The module also will supply astronauts with vital resources like water and oxygen, ensuring they’re well-supported during their journey to the Moon.

The crew module adapter bridges electrical, data, and fluid systems between Orion’s crew and service modules with an umbilical connector, and it also houses electronic equipment for communications, power, and control.

The integrated European Service Module and crew module adapter, which together make the service module, will undergo final inspections before engineers move it to the clean room inside the spaceport’s O&C high bay for welding operations. Later in the production flow, the Artemis III crew module will be connected to the service module via the crew module adapter.

The European Service Module is managed by the Orion team at NASA’s Glenn Research Center in Cleveland. The arrival of the Artemis III hardware to Kennedy marks the first time two Orion service modules have been inside the O&C facility at the same time during the agency’s Artemis campaign. The Artemis II service module is already mated to the crew module, and engineers continue to process the integrated modules inside the facility ahead of the test flight.

NASA to Fly International CubeSats Aboard Artemis II Test Flight   

NASA is working to fly five CubeSats from international space agencies on the Artemis II test flight, the first crewed mission under NASA’s Artemis campaign. 

 

In a ceremony at the German Space Agency DLR Sept. 18, Catherine Koerner, NASA’s associate administrator for exploration systems development, signed an agreement for Germany to fly TACHELES, a CubeSat that will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.  

 

CubeSats are shoebox-sized payloads that have the potential to expand knowledge of the space environment. They will ride to space inside a ring that connects NASA’s Orion spacecraft to the upper stage of the SLS (Space Launch System) rocket. They will be deployed in high Earth orbit after the upper stage detaches from Orion and the spacecraft is safely flying free on its own and a safe distance away from the stage.  

 

By working with other countries to fly CubeSats, NASA is increasing access to space for the international community and enabling its partners to expand scientific and technological knowledge. Although mission success for CubeSats historically has mixed results given their small size and the relatively low cost to develop them, the collaborations provide opportunities for NASA and other countries to work together to integrate and fly technology and experiments as part of Artemis. 

 

NASA will share more details about the additional countries it is working with to fly CubeSats on Artemis II, all of which are countries that have signed the Artemis Accords, as the international agreements are put in place. 

NASA Teams Update Camera Software Ahead of Artemis II Launch

NASA

Following successful testing earlier this year of the high-speed film and high-speed digital cameras on mobile launcher 1 and Launch Pad 39B, teams at NASA’s Kennedy Space Center in Florida recently completed additional testing to gather more data for the film cameras ahead of the Artemis II mission.

Building on the first test, engineers with the agency’s Exploration Ground Systems Program updated the software that activates the film cameras remotely from the firing room at the spaceport’s Launch Control Center. Teams turned on the cameras remotely to demonstrate two different capabilities: triggering the cameras through the countdown clock, which is how these cameras will normally operate during the launch countdown, and activating them through the emergency camera control panel, which allows teams to turn on the cameras in the unlikely event of an emergency during launch countdown.

The 68 high-speed cameras, which start during the final 12 seconds of the countdown, will provide views of the rocket and surrounding ground structures during launch. The imagery also is used in detailed post-launch analysis.

This test is part of  integrated testing to verify and validate the ground systems that will support launch. The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.

Rocket Hardware for Future Artemis Flights Moved to Barge for Delivery to NASA’s Kennedy Space Center

NASA is making strides with the Artemis campaign as key components for the SLS (Space Launch System) rocket continue to make their way to NASA’s Kennedy Space Center in Florida. Teams with NASA and Boeing loaded the core stage boat-tail for Artemis III and the core stage engine section for Artemis IV onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28.

A circular yellow core stage of the SLS rocket is being loaded onto the Pegasus Barge.
The core stage engine section of the SLS (Space Launch System) rocket for Artemis IV is loaded onto the agency’s Pegasus barge at Michoud Assembly Facility in New Orleans on Aug. 28. The core stage hardware will be moved NASA’s to Kennedy’s Space Systems Processing Facility for outfitting. Photo Credit: NASA/Justin Robert

The core stage hardware joins the launch vehicle stage adapter for Artemis II, which was moved onto the barge at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on Aug. 21. Pegasus will ferry the multi-mission rocket hardware more than 900 miles to the Space Coast of Florida. Teams with the NASA’s Exploration Ground Systems Program will prepare the launch vehicle stage adapter for Artemis II stacking operations inside the Vehicle Assembly Building, while the core stage hardware will be moved to Kennedy’s Space Systems Processing Facility for outfitting. Beginning with Artemis III, core stages will undergo final assembly at Kennedy.

The launch vehicle stage adapter is essential for connecting the rocket’s core stage to the upper stage. It also shields sensitive avionics and electrical components in the rocket’s interim cryogenic propulsion stage from the intense vibrations and noise of launch.

The boat-tail and engine section are crucial for the rocket’s functionality. The boat-tail extends from the engine section, fitting snugly to protect the rocket’s engines during launch. The engine section itself houses more than 500 sensors, 18 miles of cables, and key systems for fuel management and engine control, all packed into the bottom of the towering 212-foot core stage.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

For more on NASA SLS, visit: https://www.nasa.gov/sls

NASA Kennedy Team Completes Artemis Emergency Egress System Demonstration 

Teams at NASA's Kennedy Space Center in Florida are seen entering the Artemis emergency egress baskets on the mobile launcher 1 at Launch Pad 39B as part of a practice demonstration to learn the emergency escape or egress procedures ahead of the Artemis II launch.
Teams at NASA’s Kennedy Space Center in Florida practice the Artemis mission emergency escape or egress procedures during a series of integrated system verification and validation tests at Launch Pad 39B on Sunday, Aug. 11, 2024. Members of the closeout crew, pad rescue team and the Exploration Ground Systems Program practiced the process of getting inside and out of the emergency egress baskets. While the crew and other personnel will ride the emergency egress baskets to the terminus area in a real emergency, no one rode the baskets for this test. Instead, teams tested the baskets during separate occasions by using water tanks filled to different levels to replicate simulate the weight of passengers. Photo credit: NASA/Kim Shiflett

Teams with NASA’s Exploration Ground Systems (EGS) Program at the agency’s Kennedy Space Center completed an emergency egress system demonstration throughout the course of several days at Launch Complex 39B ahead of the Artemis II test flight that will carry four astronauts around the Moon.

The EGS team practiced emergency procedures during day and nighttime launch scenarios with the closeout crew, the team responsible for helping the astronauts get inside the Orion spacecraft, and the Pad Rescue team, which would aid personnel away from the launch pad in an emergency.

Training included exiting the white room in the crew access arm of the mobile launcher, the area where the crew enters and exits Orion, while the fire suppression system was fully activated. The team then evacuated to the terminus area, the location at the perimeter of the launch pad where the emergency egress baskets come to a stop. For this test, personnel did not ride down the baskets, but did have the opportunity to practice getting inside the baskets when on the mobile launcher and exiting them at the terminus area. Once there, armored emergency response vehicles drove the team away to one of the designated safe site locations at Kennedy.

NASA

“Our latest integrated ground systems test is about demonstrating the capability of the entire emergency egress response,” said Charlie Blackwell-Thompson, Artemis launch director. “From the time an emergency condition is declared until we have the crews, both flight and ground, safely accounted for outside the hazardous area.”

During a real emergency, personnel will use the emergency egress baskets, which are suspended on a track cable that connects the mobile launcher to the perimeter of the pad. From there, they will travel down the 1,335-foot-long cables where the emergency response vehicles will drive them away to safety. Prior to this test and throughout the course of several months, teams conducted several basket release demonstrations to validate the system.

During this test campaign the Artemis launch team also conducted an emergency egress demonstration simulation to practice how team members would respond to an emergency taking place at the pad during launch countdown.

EGS team members will have another opportunity to practice the emergency egress procedures with the Artemis II crew during a test closer to launch when the rocket is at the launch pad.

NASA’s Rocket On Roll: Core Stage Arrives at Vehicle Assembly Building

After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Once inside, SLS will be prepared for integration atop the mobile launcher ahead of the Artemis II launch.
After completing its journey from NASA’s Michoud Assembly Facility in New Orleans aboard the Pegasus barge, teams with Exploration Ground Systems (EGS) transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building in Florida on Tuesday, July 23, 2024. Photo credit: NASA/Isaac Watson

NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida.

Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility in New Orleans, where it was manufactured and assembled.

Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations.

In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft.

The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.