Artemis I Core Stage Arrives at Kennedy

The final piece of NASA’s Space Launch System (SLS) rocket that will send NASA’s Artemis I mission to the Moon has arrived at the agency’s Kennedy Space Center in Florida.

The SLS Program delivered the core stage rocket to the center’s Launch Complex 39 turn basin wharf after completing a successful series of Green Run tests at Stennis Space Center in Mississippi. The 212-foot-tall core stage, which is the largest rocket stage NASA has ever built, completed its voyage aboard the agency’s Pegasus barge on April 27. After a 900-mile journey, teams aboard the barge, which was modified to support SLS’s weight and length, safely piloted the specialized self-sustaining vessel to the spaceport.

>>Read more

NASA Team Preparing Hardware for Future Moon Rockets

Technicians and engineers continue to make progress manufacturing core stages that will help power NASA’s Space Launch System (SLS) rocket for its second and third flights. NASA and Boeing, the lead contractor for the core stage, are in the process of conducting one of the biggest Artemis II milestones: assembling the top half of the core stage.

The 212-foot tall core stage for the SLS rocket is the largest rocket stage NASA has ever produced. The five individual elements that make up the core stage – the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section – are manufactured and assembled at NASA’s Michoud Assembly Facility in New Orleans. Together, the elements will supply propellant, vehicle control, and power to the four RS-25 engines at the bottom of the stage to produce more than 2 million pounds of thrust to send missions to the Moon.

The team manufactures every SLS core stage in Michoud’s 43-acre building which provides more than enough space for crews to work in tandem to build the core stages for Artemis II and Artemis III, the second and third flights of the SLS rocket and the first crewed missions of NASA’s Artemis program.

It takes teamwork to build a super heavy-lift rocket. Look behind the scenes at the work being done at NASA’s rocket factory:

The Artemis II Intertank is lifted into the Cell D of the VAB at NASA Michoud Assembly Facility on Friday, March 19, 2021.

Coming together to build the upper part of the rocket

After all the core stage’s large five structures are built and outfitted, these structures are connected during three major joining operations. For first one, the forward or upper parts of the core stage are joined together for the first time. First, teams move the intertank into an assembly area and connect it to the liquid oxygen tank, and then they add the forward skirt to form the entire upper part of the SLS core stage.

Crews with NASA and Boeing, the core stage prime contractor, recently moved the Artemis II intertank, above, to the assembly area where the three components will be stacked.

This image shows the forward skirt that will be used on the core stage of NASA’s Space Launch System rocket for Artemis II, the first crewed mission of NASA’s Artemis program, at NASA’s Michoud Assembly Facility. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The forward skirt houses flight computers, cameras, and avionics systems. The hardware is located at the top of the 212-foot-tall core stage and connects the upper part of the rocket to the core stage. Soon, technicians will ready the forward skirt for the first of three core stage assembly mates called the forward join. The forward join consists of three main parts -- the forward skirt, liquid oxygen tank, and intertank – to create the top, or forward part, of the core stage. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the human landing system, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Image credit: NASA/Michael DeMocker

The Artemis II forward skirt, pictured above, has been outfitted and is ready for integration with the other large core stage structures. The forward skirt houses flight computers, cameras, and avionics systems. It is located at the very top of the core stage and connects to the upper part of the rocket.

This image highlights the liquid oxygen tank, which will be used on the core stage of NASA’ Space Launch System rocket for Artemis II, the first crewed mission of NASA’s Artemis program, at NASA’s Michoud Assembly Facility. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The forward skirt houses flight computers, cameras, and avionics systems. The liquid oxygen tank holds 196,000 gallons of liquid oxygen cooled to minus 297 degrees Fahrenheit. The LOX hardware sits between the core stage’s forward skirt and the intertank. Along with the liquid hydrogen tank, it will provide fuel to the four RS-25 engines at the bottom of the core stage to produce more than two million pounds of thrust to launch NASA’s Artemis missions to the Moon. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket can send astronauts in Orion around the Moon in a single mission. Image credit: NASA/Michael DeMocker

Moving through the manufacturing process

The core stage has two huge cryogenic liquid propellant tanks that collectively hold more than 733,000 gallons of liquid propellant to help launch the Space Launch System rocket to the Moon. Moving the immense hardware, especially the two propellant tanks, around the factory is a delicate process.

Teams carefully orchestrate every step of every lift and transport inside and outside the rocket factory. To safely and securely move hardware, they use special transporters and cranes that are designed to contain, hold, and handle the weight of each element. Above, teams move the more than 130-foot-tall liquid hydrogen tank to the same area as the liquid oxygen tank. Both propellant tanks will be used for Artemis II.

The aisles at Michoud are extra-wide to ensure large hardware can be transported throughout the factory. For the next phase of manufacturing, crews recently moved the boat-tail, a fairing-like cover that attaches to the engine section on the bottom of the core stage. The boat-tail is shown in the image foreground, and the engine section for Artemis II can be seen in the background covered with scaffolding. The four RS-25 engines for the SLS rocket will be mounted inside the engine section, and the boat-tail helps to protect and cover most of the four RS-25 engines’ critical systems.

Fusion Weld on H3 R2

It’s all in the details

As crews prepare the core stage elements that will be used for Artemis II for assembly and integration, the hardware for Artemis III is being welded in other areas of the factory. Engineers and technicians use friction-stir welding methods to connect the panels that make up each piece of hardware together and build larger structures. Fusion welding is traditional welding, and it uses heat to plug holes left by machines welding the larger pieces as well as for any necessary weld repairs.

Welding processes help to create the shells, or outside, of the core stage structures. Above, the engine section for Artemis III comes together in the Vertical Weld Center at Michoud. They are made by connecting panels such as the one in the front of this image. The engine section has been completed and moved to another part of the factory. One of the biggest tasks ahead, is outfitting it with a network of internal components and systems that connect to the RS-25 engines.

In May, the core stage team will begin work on the Artemis IV core stage, so three stages will be under construction at the same time. Because of the factory’s size, state-of-the-art equipment, and manufacturing processes, skilled workers can produce multiple rocket stages to power NASA’s next-generation Moon missions through the Artemis program.

NASA is working to land the first woman and the first person of color on the Moon. SLS and Orion, along with the human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

NASA Removes Rocket Core Stage for Artemis Moon Mission from Stennis Test Stand

Crews at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, worked April 19-20 to remove the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand in preparation for its transport to Kennedy Space Center in Florida. Operations required crews to lift the core stage from its vertical placement in the stand and lower it to a horizontal position on the B-2 Test Stand tarmac. The stage now will be loaded on NASA’s Pegasus barge for transport to Kennedy, where it will be prepared for launch of the Artemis I mission. Removal of the largest rocket stage ever built by NASA followed completion of a series of eight Green Run tests over the past year. During the Green Run series, teams performed a comprehensive test of the stand’s sophisticated and integrated systems. The series culminated in a hot fire of the stage’s four RS-25 engines on the B-2 stand March 18. During the hot fire, the four engines generated a combined 1.6 million pounds of thrust, just as during an actual launch. The test was the most powerful performed at Stennis in more than 40 years. NASA is building SLS, the world’s most powerful rocket, to return humans to deep space missions. As part of the backbone of NASA’s Artemis program, SLS will return humans, including the first woman and person of color, to the surface of the Moon to establish a sustainable presence and prepare for eventual missions to Mars.

Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA
Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA
Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA
Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA

Artemis I Core Stage Being Readied for Shipment to Kennedy

The Space Launch System (SLS) core stage Green Run team has reviewed extensive data and completed inspections that show the rocket’s core stage and engines are in excellent condition after the full-duration Green Run hot fire test on Mar. 18.

This test at NASA’s Stennis Space Center near Bay St. Louis, Mississippi allowed the team to obtain data to meet all the hot fire test objectives. This second hot fire test with the core stage flight hardware that will launch the Artemis I mission to the Moon was described as “flawless” by the test team that included NASA and prime contractors Boeing and Aerojet Rocketdyne. The team encountered no issues during the test that started with powering up the core stage on Mar. 16.

While analyzing data, the team refurbished the core stage in preparations for shipping it this month to NASA’s Kennedy Space Center in Florida for the Artemis I launch. Refurbishment activities included drying the RS-25 engines and making expected repairs to the engines and the thermal protection system on the core stage.

This week, the team powered up the core stage and loaded the flight software that will be used for the Artemis I mission. Now, they are disconnecting systems that connect the stage to the B-2 Test Stand. Next, the stage will undergo final shipping preparations before it is lifted out of the stand and placed on the Pegasus barge.

Check back at this blog for updates as the Artemis I core stage prepares for its voyage to Kennedy.

Fueling Underway For Artemis I Launch

A view of the Interim Cryogenic Propulsion System in the Multi-Payload Processing Facility at NASA's Kennedy Space Center in Florida.
A view of the Interim Cryogenic Propulsion System in the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 18, 2021. Photo credit: NASA/Glenn Benson

Teams with NASA’s Kennedy Space Center Exploration Ground Systems and primary contractor, Jacobs, are fueling the Orion service module ahead of the Artemis I mission. The spacecraft currently resides in Kennedy’s Multi-Payload Processing Facility alongside the Interim Cryogenic Propulsion System (ICPS), the rocket’s upper stage that will send Orion to the Moon. After servicing, these elements will be integrated with the flight components of the Space Launch System, which are being assembled in the Vehicle Assembly Building.

Technicians began loading Orion’s service module with oxidizer, which will power the Orbital Maneuvering System main engine and auxiliary thrusters on the European-built service module ahead of propellant loading. These auxiliary thrusters stabilize and control the rotation of the spacecraft after it separates from the ICPS. Once the service module is loaded, teams will fuel the crew module to support thermal control of the internal avionics and the reaction control system. These 12 thrusters steady the crew module and control its rotation after separation from the service module.

Once Orion servicing is complete, teams will fill the ICPS. This liquid oxygen/liquid hydrogen-based system will push the spacecraft beyond the Moon for the test flight under the agency’s Artemis program. In several weeks, when fueling is complete, Orion will move to the center’s Launch Abort System Facility to integrate its launch abort system, and the ICPS will move to the Vehicle Assembly Building to be stacked atop the mobile launcher.

Orion Makes a Big Splash for Artemis II

The Orion spacecraft structural test article was successfully drop tested April 6 in the hyrdro impact basin at NASA’s Langley Research Center’s Landing and Impact Research Facility in Hampton, Virginia. Data collected from 500 sensors during the drop will help researchers finalize computer models of extreme landing conditions prior to Artemis II. This was the second of four drops in this series of tests.

 

Under Pressure! New Rainbird System Will Protect Artemis II

Water spraying out of a nozzle for rainbird testing for the Artemis II mission.
Water flows through a small-scale, 3D-printed nozzle during prototype testing of a new rainbird system on March 24, 2021, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Ben Smegelsky

As NASA prepares for the uncrewed Artemis I test flight, teams at the agency’s Kennedy Space Center are also hard at work getting ready for the Artemis II mission that will send astronauts on a trip around the Moon ahead of a crewed lunar landing.

Water flows through large nozzles during rainbird testing for the Artemis II mission.
Teams with NASA’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system at the agency’s Kennedy Space Center in Florida on March 24, 2021, that can be used for the crewed Artemis II mission to the Moon. Photo credit: NASA/Ben Smegelsky

This includes assessing a new prototype “rainbird” system designed to protect the mobile launcher – as well as NASA’s Space Launch System (SLS) – when the engines roar to life. The March 24 tests included running various water pressures through small-scale, 3D-printed nozzles to capture data that can be used to develop full-scale hardware.

The rainbirds will release enough water to fill 40 swimming pools in 40 seconds. This massive volume will help absorb the heat and energy when SLS, the most powerful rocket the agency has ever built, lifts off with the Orion spacecraft from Kennedy’s Launch Pad 39B.

While upgraded rainbirds – large-scale water nozzles – have already been tested and installed on the mobile launcher for the Artemis I launch, Exploration Ground Systems (EGS) found room for improvement. This led teams from EGS and supporting contractors to start testing another prototype system to distribute water more evenly to maximize performance ahead of the Artemis II launch.

Water flows through a nozzle during rainbird testing for the Artemis II mission.
Alongside the iconic Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, teams with the agency’s Exploration Ground Systems and supporting contractors conduct prototype testing of a new rainbird system on March 24, 2021. Photo credit: NASA/Ben Smegelsky

“By running our prototype through a range of pressures, we can simulate what each of the rainbirds will see on the mobile launcher on launch day and have a better understanding of how they will perform when we scale them back up to full size,” said Dave Valletta, a design engineer at Kennedy working on the ignition overpressure protection and sound suppression (IOPSS) system.

A critical piece of the IOPSS system, the rainbird got its name decades ago when space shuttle developers noted that it looked like a garden sprayer.

“When we saw the pattern of the water discharge during the first test flow in the shuttle program, it reminded us of your common lawn sprinkler, only it did not rotate and was 100 times the size,” said Jerry Smith, a design engineer for mechanical-fluid systems at Kennedy.

Once prototype testing is complete, allowing better prediction of future spray patterns, the team will move forward with designing a preferred concept. That concept will be built and installed on the mobile launcher to undergo verification and validation testing, where the newly installed nozzles will be fully integrated with the launch pad to ensure they work as expected.

“The confidence check gained from these tests will lead us to developing full-scale nozzles for the mobile launcher,” said Gerald Patterson, IOPSS and fire suppression system operations engineer and test lead. “Once installed, they’ll provide more efficient water distribution across the deck and, ultimately, better protection to ground systems, the SLS rocket, and its crew for Artemis II and beyond.”