Orion’s Artemis III European Service Module Joined with Crew Module Adapter

Teams began connecting the European Service Module 3 to the crew module adapter.
Teams began connecting the European Service Module 3 to the crew module adapter on Tuesday, Sept. 24, 2024, inside the Neil A. Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. The integrated hardware will provide propulsion, thermal control, and electrical power for NASA’s Orion spacecraft set to carry four NASA astronauts to the lunar South Pole region of the Moon for the agency’s Artemis III campaign. Photo credit: NASA/Kim Shiflett

Teams have joined the Artemis III European Service Module and crew module adapter for NASA’s Orion spacecraft inside the Neil A. Armstrong Operations and Checkout (O&C) Building at NASA’s Kennedy Space Center in Florida, following the completion of the Integration Readiness Review on Sept. 17.

The ESA (European Space Agency)-provided European Service Module is assembled by Airbus in Bremen, Germany, from parts made in 10 European countries and the United States. It acts as the driving force behind the Orion spacecraft for deep space exploration, providing essential propulsion, thermal control, and electrical power. The module also will supply astronauts with vital resources like water and oxygen, ensuring they’re well-supported during their journey to the Moon.

The crew module adapter bridges electrical, data, and fluid systems between Orion’s crew and service modules with an umbilical connector, and it also houses electronic equipment for communications, power, and control.

The integrated European Service Module and crew module adapter, which together make the service module, will undergo final inspections before engineers move it to the clean room inside the spaceport’s O&C high bay for welding operations. Later in the production flow, the Artemis III crew module will be connected to the service module via the crew module adapter.

The European Service Module is managed by the Orion team at NASA’s Glenn Research Center in Cleveland. The arrival of the Artemis III hardware to Kennedy marks the first time two Orion service modules have been inside the O&C facility at the same time during the agency’s Artemis campaign. The Artemis II service module is already mated to the crew module, and engineers continue to process the integrated modules inside the facility ahead of the test flight.

NASA to Fly International CubeSats Aboard Artemis II Test Flight   

NASA is working to fly five CubeSats from international space agencies on the Artemis II test flight, the first crewed mission under NASA’s Artemis campaign. 

 

In a ceremony at the German Space Agency DLR Sept. 18, Catherine Koerner, NASA’s associate administrator for exploration systems development, signed an agreement for Germany to fly TACHELES, a CubeSat that will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.  

 

CubeSats are shoebox-sized payloads that have the potential to expand knowledge of the space environment. They will ride to space inside a ring that connects NASA’s Orion spacecraft to the upper stage of the SLS (Space Launch System) rocket. They will be deployed in high Earth orbit after the upper stage detaches from Orion and the spacecraft is safely flying free on its own and a safe distance away from the stage.  

 

By working with other countries to fly CubeSats, NASA is increasing access to space for the international community and enabling its partners to expand scientific and technological knowledge. Although mission success for CubeSats historically has mixed results given their small size and the relatively low cost to develop them, the collaborations provide opportunities for NASA and other countries to work together to integrate and fly technology and experiments as part of Artemis. 

 

NASA will share more details about the additional countries it is working with to fly CubeSats on Artemis II, all of which are countries that have signed the Artemis Accords, as the international agreements are put in place. 

NASA Teams Update Camera Software Ahead of Artemis II Launch

NASA

Following successful testing earlier this year of the high-speed film and high-speed digital cameras on mobile launcher 1 and Launch Pad 39B, teams at NASA’s Kennedy Space Center in Florida recently completed additional testing to gather more data for the film cameras ahead of the Artemis II mission.

Building on the first test, engineers with the agency’s Exploration Ground Systems Program updated the software that activates the film cameras remotely from the firing room at the spaceport’s Launch Control Center. Teams turned on the cameras remotely to demonstrate two different capabilities: triggering the cameras through the countdown clock, which is how these cameras will normally operate during the launch countdown, and activating them through the emergency camera control panel, which allows teams to turn on the cameras in the unlikely event of an emergency during launch countdown.

The 68 high-speed cameras, which start during the final 12 seconds of the countdown, will provide views of the rocket and surrounding ground structures during launch. The imagery also is used in detailed post-launch analysis.

This test is part of  integrated testing to verify and validate the ground systems that will support launch. The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon.