Artemis I – Flight Day 20: Orion Conducts Return Powered Flyby 

On Dec. 5, 2022, Orion completed the return powered flyby burn, committing the spacecraft to a Dec. 11 splashdown in the Pacific Ocean.

NASA’s Orion spacecraft is on course for its return to Earth on Sunday, Dec. 11. The spacecraft made its second and final close approach to the Moon at 10:43 a.m. CST Monday, Dec. 5, just before its return powered flyby burn, passing 80.6 miles above the lunar surface.  

The burn, which used the spacecraft’s main engine on the European-built service module, lasted 3 minutes, 27 seconds, and changed the velocity of the spacecraft by about 655 mph (961 feet per second). It was the final major engine maneuver of the flight test.  

“Orion is heading home! Today the team achieved another momentous accomplishment, flying Orion just 80 miles from the surface of the Moon. The lunar flyby enabled the spacecraft to harness the Moon’s gravity and slingshot it back toward Earth for splashdown,” said Administrator Bill Nelson. “When Orion re-enters Earth’s atmosphere in just a few days, it will come back hotter and faster than ever before – the ultimate test before we put astronauts on board. Next up, re-entry!” 

Several hours before the lunar flyby, the spacecraft performed a trajectory correction burn at 4:43 a.m. CST using the reaction control system thrusters on the service module. The burn lasted 20.1 seconds and changed the velocity of the spacecraft by 1.39 mph (2.04 feet per second). 

The mission management team convened and polled “go” to deploy recovery assets off the coast of California ahead of Orion’s splashdown on Dec. 11. As soon as Orion splashes down, a team of divers, engineers, and technicians will depart the ship on small boats and arrive at the capsule. Once there, they will secure it and prepare to tow it into the back of the ship, known as the well deck. The divers will attach a cable to pull the spacecraft into the ship, called the winch line, and up to four additional tending lines to attach points on the spacecraft. The winch will pull Orion into a specially designed cradle inside the ship’s well deck and the other lines will control the motion of the spacecraft. Once Orion is positioned above the cradle assembly, the well deck will be drained and Orion will be secured on the cradle. 

 “Last week, we completed our final rehearsal with the USS Portland, which will be our recovery ship for Artemis I,” said Melissa Jones, landing and recovery director, NASA’s Kennedy Space Center. “We had a great three days working with them to refine our procedures and integrate our teams so we can meet the objectives of recovering the Orion spacecraft.” 

Orion has used approximately 8,050 pounds of propellant during Artemis I, which is 180 pounds less than expected prelaunch. There are 2,075 pounds of margin available over what was planned for the mission, a 165-pound increase. 

As of 5:29 p.m. CST on Dec. 5, Orion was traveling 244,629 miles from Earth and 16,581 miles from the Moon, cruising at 668 mph. 

NASA Television and the agency’s website will resume live coverage of Orion’s journey at 9 a.m. Tuesday. 

As Orion leaves the lunar sphere of influence for the final time, watch NASA astronaut Thomas Marshburn read the children’s book Goodnight Moon from space during his expedition aboard the International Space Station as part of a collaboration with Crayola Education to bring stories and the unique teachings of space to life with art and creativity. 

Images are sent down to Earth, and uploaded to NASA’s Johnson Space Center Flickr account and Image and Video Library. When bandwidth allows, views of the mission will be available in real-time via video stream. 

Artemis I — Flight Day 13: Orion Goes the (Max) Distance

(Nov. 28, 2022) On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.

NASA’s uncrewed Orion spacecraft reached the farthest distance from Earth it will travel during the Artemis I mission — 268,563 miles from our home planet — just after 3 p.m. CST. The spacecraft also captured imagery of Earth and the Moon together throughout the day, including of the Moon appearing to eclipse Earth. 

Reaching the halfway point of the mission on Flight Day 13 of a 25.5 day mission, the spacecraft remains in healthy condition as it continues its journey in distant retrograde orbit, an approximately six-day leg of its larger mission thousands of miles beyond the Moon.  

“Because of the unbelievable can-do spirit, Artemis I has had extraordinary success and has completed a series of history making events,” said NASA Administrator Bill Nelson. “It’s incredible just how smoothly this mission has gone, but this is a test. That’s what we do – we test it and we stress it.” 

Engineers had originally planned an orbital maintenance burn today but determined it was not necessary because of Orion’s already precise trajectory in distant retrograde orbit. Based on Orion’s performance, managers are examining adding seven additional test objectives to further characterize the spacecraft’s thermal environment and propulsion system to reduce risk before flying future missions with crew. To date, flight controllers have accomplished or are in the process of completing 37.5% of the test objectives associated with the mission, with many remaining objectives set to be evaluated during entry, descent, splashdown, and recovery. 

NASA’s Exploration Ground Systems team and the U.S. Navy are beginning initial operations for recovery of Orion when it splashes down in the Pacific Ocean. The team will deploy Tuesday for training at sea before return to shore to make final preparations ahead of splashdown. 

Managers also closed out today a team formed earlier in the mission to investigate readings associated with the spacecraft’s star trackers after determining the hardware is performing as expected and initially suspect readings are a byproduct of the flight environment.   

Flight controllers also have completed 9 of 19 translational burns and exercised the three types of engines on Orion – the main engine, auxiliary thrusters, and reaction control system thrusters. Approximately 5,640 pounds of propellants have been used, which is about 150 pounds fewer than prelaunch expected values. More than 2,000 pounds of margin remain available beyond what teams plan to use for the mission, an increase of more than 120 pounds from prelaunch expected values. So far, teams have already sent more than 2,000 files from the spacecraft to Earth. 

Just before 8 p.m. EST, Orion was 268,457 miles from Earth and 43,138 miles from the Moon, cruising at 1,679 miles per hour.

To follow the mission real-time, you can track Orion during its mission around the Moon and back and watch live imagery from the spacecraft. Check the NASA TV schedule for updates on the next televised events. The latest imagery and videos can be found on the Johnson Space Center Flickr. 

Artemis I – Flight Day Six: Orion Performs Lunar Flyby, Closest Outbound Approach

Flight Day 6: A Selfie with the Moon
(Nov. 21, 2022) A portion of the far side of the Moon looms large just beyond the Orion spacecraft in this image taken on the sixth day of the Artemis I mission by a camera on the tip of one of Orion’s solar arrays. The spacecraft entered the lunar sphere of influence Sunday, Nov. 20, making the Moon, instead of Earth, the main gravitational force acting on the spacecraft. On Monday, Nov. 21, it came within 80 miles of the lunar surface, the closest approach of the uncrewed Artemis I mission, before moving into a distant retrograde orbit around the Moon. The darkest spot visible near the middle of the image is Mare Orientale.

On its sixth day into the Artemis I mission, Orion successfully completed its fourth orbital trajectory correction burn using the auxiliary engines at 1:44 a.m. CST ahead the first of two maneuvers required to enter a distant retrograde orbit around the Moon. The first three trajectory correction burns provided an opportunity to fire all three thruster types on Orion with the first using the large orbital maneuvering system engine, the second using the small reaction control system thrusters, and the third using the medium-sized auxiliary engines. 

Orion completed the outbound powered flyby at 6:44 a.m., passing about 81 miles above the surface at 6:57 a.m. The spacecraft speed increased from 2,128 mph before the burn to 5,102 mph after the burn. Shortly after the outbound flyby burn, the space craft passed about 1,400 miles above the Apollo 11 landing site at Tranquility Base at 7:37 a.m. Orion later flew over the Apollo 14 site at about 6,000 miles in altitude and then over the Apollo 12 site at an altitude of about 7,700 miles 

“The mission continues to proceed as we had planned, and the ground systems, our operations teams, and the Orion spacecraft continue to exceed expectations, and we continue to learn along the way about this new, deep-space spacecraft,” said Mike Sarafin, Artemis I mission manager, in a Nov. 21 briefing at Johnson Space Center. 

(Nov. 21, 2022) – The Earth is seen setting from the far side of the Moon just beyond the Orion spacecraft in this video taken on the sixth day of the Artemis I mission by a camera on the tip of one of Orion’s solar arrays. The spacecraft was preparing for the Outbound Powered Flyby maneuver which would bring it within 80 miles of the lunar surface, the closest approach of the uncrewed Artemis I mission, before moving into a distant retrograde orbit around the Moon. The spacecraft entered the lunar sphere of influence Sunday, Nov. 20, making the Moon, instead of Earth, the main gravitational force acting on the spacecraft.

Orion will enter distant retrograde orbit beyond the Moon on Friday, Nov. 25 with the second maneuver, called the distant retrograde orbit insertion burn. The orbit is “distant” in the sense that it’s at a high altitude from the surface of the Moon, and it’s “retrograde” because Orion will travel around the Moon opposite the direction the Moon travels around Earth. This orbit provides a highly stable orbit where little fuel is required to stay for an extended trip in deep space to put Orion’s systems to the test in an extreme environment far from Earth.  

Orion will travel about 57,287 miles beyond the Moon at its farthest point from the Moon on Nov. 25, pass the record set by Apollo 13 for the farthest distance traveled by a spacecraft designed for humans at 248,655 miles from Earth on Saturday, Nov. 26, and reach its maximum distance from Earth of 268,552 miles Monday, Nov. 28.  

As of Monday, Nov. 21, a total of about 3,700 pounds of propellant has been used, about 75 pounds less than prelaunch expected values. There is more than 2,000 pounds of margin available over what is planned for use during the mission, an increase of about 200 pounds from prelaunch expected values. 

Just after 2:45 p.m. CST on Nov. 21, Orion had traveled 216,842 miles from Earth and was 13,444 miles from the Moon, cruising at 3,489 miles per hour.   

Follow along and track Orion via the Artemis Real-Time Orbit Website, or AROW, and watch live footage from the spacecraft. You can find the latest images from Orion on the Johnson Space Center Flickr account.

Orion Successfully Completes Lunar Flyby, Re-acquires Signal with Earth

Artemis I Earthrise

Orion re-acquired signal with NASA’s Deep Space Network, at 7:59 a.m. EST after successfully performing the outbound powered flyby burn at 7:44 a.m. EST with a firing of the orbital maneuvering system engine for 2 minutes and 30 seconds to accelerate the spacecraft at a rate of more than 580 mph. At the time of the burn, Orion was 328 miles above the Moon, travelling at 5,023 mph. Shortly after the burn, Orion passed 81 miles above the Moon, travelling at 5,102 mph. At the time of the lunar flyby, Orion was more than 230,000 miles from Earth.  

The outbound powered flyby burn is the first of two maneuvers required to enter the distant retrograde orbit around the Moon. The spacecraft will perform the distant retrograde orbit insertion burn Friday, Nov. 25, using the European Service Module. Orion will remain in this orbit for about a week to test spacecraft systems. The distant retrograde will take Orion 40,000 miles past the Moon before it returns to Earth. Orion’s greatest distance from the Earth will be Monday, Nov. 28 at 3:05 p.m. CST at more than 268,500 miles. Orion’s greatest distance from the Moon will be on Friday, Nov. 25 at 3:53 p.m. CST at more than 57,250 miles. 

The Deep Space Network, managed by NASA’s Jet Propulsion Laboratory in Southern California, handles communications for Artemis I beyond low-Earth orbit. This includes the mission’s trajectory corrections, powered flyby burns, and insertion into and departure from distant retrograde orbit, while the Near Space Network provides supplemental navigation data with assistance from the Near Space Network’s tracking and data relay satellite constellation. 

The Deep Space Network consists of three facilities spaced equidistant from each other – approximately 120 degrees apart in longitude – around the world. These sites are at Goldstone, near Barstow, California; near Madrid, Spain; and near Canberra, Australia. The strategic placement of these sites permits constant communication with spacecraft as our planet rotates – before a distant spacecraft sinks below the horizon at one site, another site can pick up the signal and carry on communicating. Orion initially regained signal with the Madrid ground station after the lunar flyby and then transitioned signal to the Goldstone station. 

NASA will host a news conference on NASA T V at 5 p.m. EST to discuss Orion’s outbound powered flyby burn and provide an update on post-launch assessments of the Space Launch System rocket and Exploration Ground Systems.  

Participants will include: 

  • Mike Sarafin, Artemis I mission manager  
  • Judd Frieling, NASA flight director  
  • Howard Hu, Orion Program manager 

NASA TV coverage of the distant retrograde orbit insertion burn will begin at 4:30 p.m. EST Friday, with the burn scheduled to occur at 4:52 p.m. 

Learn more about distant retrograde orbit and NASA’s communication and navigation networks. See which antennas are communicating with Orion in real-time on Deep Space Network Now and track Orion via the Artemis Real-Time Orbit Website, or AROW. 

Artemis I – Flight Day Five: Orion Enters Lunar Sphere of Influence Ahead of Lunar Flyby

Engineers activated the Callisto payload, Lockheed Martin’s technology demonstration in collaboration with Amazon and Cisco. Callisto will test voice-activated and video technology that may assist future astronauts on deep space missions.

Five days into the 25.5-day Artemis I mission, Orion continues on its trajectory toward the Moon. Flight controllers in the White Flight Control Room at NASA’s Johnson Space Center in Houston captured additional imagery of the Moon using the optical navigation camera. Gathering imagery of the Earth and the Moon at different phases and distances will provide an enhanced body of data to certify its effectiveness as a location determination aid for future missions under changing lighting conditions. 

Orion completed its third outbound trajectory correction burn at 6:12 a.m. CST, firing the auxiliary thruster engines for a duration of 6 seconds at a rate of 3.39 feet per second to accelerate Orion and adjust the spacecraft’s path while en route to the Moon. The amount of speed change determines which of Orion’s service module engines – reaction control, auxiliary, or orbital maneuvering system – to use for a particular maneuver. 

The spacecraft entered into the lunar sphere of influence at 1:09 p.m. CST, making the Moon, instead of Earth, the main gravitational force acting on the spacecraft. Overnight, Orion will conduct the fourth outbound trajectory correction burn in advance of the outbound powered flyby burn. Flight controllers will conduct the outbound powered flyby burn by firing the orbital maneuvering system engine for 2 minutes and 30 seconds to accelerate the spacecraft, harness the force from the Moon’s gravity, and direct it toward a distant retrograde orbit beyond the Moon. 

The outbound powered flyby burn is the first of a pair of maneuvers required to enter a distant retrograde orbit around the Moon. NASA will cover the maneuver live starting at 7:15 a.m. EST on the agency’s website, NASA Television, and the NASA app. The outbound powered flyby will begin at 7:44 a.m., with Orion’s closest approach to the Moon targeted for 7:57 a.m., when it will pass about 80 miles above the lunar surface. Engineers expect to lose communication with the spacecraft as is passes behind the Moon for approximately 34 minutes starting at 7:26 a.m. The Goldstone ground station, part of NASA’s Deep Space Network, will acquire the spacecraft once it emerges from behind the Moon.  

Mission managers currently have two active anomaly resolution teams. Anomaly resolution teams are a standard part of managing the mission by pulling together a team of technical experts to focus on a specific issue by examining data to understand the implications in a particular system. Activating a separate team for this work enables engineers and flight controllers to continue focusing on commanding and monitoring the spacecraft and assessing the progress of the flight test.  

One team is currently looking at the star tracker system to understand a number of faults in the random access memory, which have been successfully recovered with power cycles. A second team is analyzing a few instances in which one of eight units located in the service module that provides solar array power to the crew module, called a power conditioning and distribution unit umbilical latching current limiter, opened without a command. The umbilical was successfully commanded closed each time and there was no loss of power flowing to avionics on the spacecraft. Both systems are currently functioning as required, and there are no mission impacts related to these efforts. Analyzing the data for these systems and understanding their behavior during an active flight test while the hardware is in the deep space environment will improve mission operations on Artemis I and future missions. 

 At 1:25 p.m. CST on Nov. 20, Orion had traveled 232,683 miles from Earth and was 39,501 miles from the Moon, cruising at 371 miles per hour. See which antennas are communicating with Orion in real-time on Deep Space Network Now and track Orion via the Artemis Real-Time Orbit Website, or AROW.  

Learn more about the Orion spacecraft in the Orion reference guide. 

Artemis I – Flight Day Four: Testing WiFi Signals, Radiator System, GO for Outbound Powered Flyby

Orion snapped this high-resolution selfie in space with a camera mounted on its solar array wing during a routine external inspection of the spacecraft on the third day into the Artemis I mission.

On Saturday, Nov. 19, the Mission Management Team polled “go” for Orion’s outbound powered flyby past the Moon. NASA will cover the flyby live on NASA TV, the agency’s website, and the NASA app starting at 7:15 a.m. EST Monday, Nov. 21. The burn is planned for 7:44 a.m. Orion will lose communication with Earth as it passes behind the Moon from 7:25 a.m. through 7:59 a.m., making its closest approach of approximately 80 miles from the surface at 7:57 a.m. 

During flight day four, flight controllers moved each solar array to a different position to test the strength of the WiFi signal with the arrays in different configurations. The Integrated Communications Officer, or INCO, tested the WiFi transfer rate between the camera on the tip of the solar array panels and the camera controller. The goal was to determine the best position to most efficiently transfer imagery files. Teams learned that having multiple cameras on at once can impact the WiFi data rate, and therefore, future solar array wing file transfer activities will be accomplished from one solar array wing at a time to optimize transfer time. 

The Emergency, Environmental, and Consumables Manager, or EECOM, tested Orion’s radiator system. Two radiator loops on the spacecraft’s European Service Module help expel excess heat generated by different systems throughout the flight. Flight controllers are testing sensors that maintain the coolant flow in the radiator loops, switching between different modes of operation and monitoring performance. During speed mode, the coolant pumps operate at a constant rate. This is the primary mode used during Artemis I. Flow control mode adjusts the pump speed as needed to maintain a constant flow through the system. The flight test objective is to monitor system performance and the accuracy of flow sensors to characterize the stability of this mode of operation.  Each loop is monitored in flow control mode for 72 hours to provide sufficient data for use on future missions. 

In a white clean room, employees dressed in white observe The Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell. The Orion star trackers are highlighted about halfway up the spacecraft.
Star trackers are sensitive cameras that take pictures of the star field around Orion. By comparing the pictures to its built-in map of stars, the star tracker can determine which way Orion is oriented. The star trackers on Orion are located on the European Service Module on either side of the optical navigation camera. This Nov. 2019 photo was taken as the Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell.

As part of planned testing throughout the mission, the guidance, navigation, and control officer, also known as GNC, performed the first of several tests of the star trackers that support Orion’s navigation system. Star trackers are a navigation tool that measure the positions of stars to help the spacecraft determine its orientation. In previous flight days, engineers evaluated initial data to understand star tracker readings correlated to thruster firings.  

Engineers hope to characterize the alignment between the star trackers that are part of the guidance, navigation and control system and the Orion inertial measurements units, by exposing different areas of the spacecraft to the Sun and activating the star trackers in different thermal states.  

Just after 5:30 p.m. on Nov. 19, Orion had traveled 222,823 miles from Earth and was 79,011 miles from the Moon, cruising at 812 miles per hour. You can track Orion via the Artemis Real-Time Orbit Website, or AROW. 

Overnight, engineers in mission control will uplink large data files to Orion to better understand how much time it takes for the spacecraft to receive sizeable files. On flight day five, Orion will undergo its third planned outbound trajectory correction burn to maneuver the spacecraft and stay on course to the Moon. 

Learn more about the console positions in mission control and the additional test objectives planned throughout the mission. 

Artemis I – Flight Day Three: Orion Conducts First Spacecraft Inspection, “Exceeding Expectations”

Orion, in the foreground of the picture, is a bright white in contrast to the darkness of space. The Moon is approximately 3/4 illuminated to the right of the spacecraft, still over 100,000 miles away.
On the third day of the Artemis I mission, Orion maneuvered its solar arrays and captured the Moon with a camera mounted on the end of the array. The spacecraft is now halfway to the Moon. The video is available by clicking the image or visiting the Johnson Space Center Flickr.

On the third day of its Artemis I journey, NASA’s uncrewed Orion spacecraft is now more than half way to the Moon.  

“Today, we met to review the Orion spacecraft performance, and it is exceeding performance expectations.” said Mike Sarafin, Artemis I mission manager. 

Friday, flight controllers used Orion’s cameras to inspect the crew module thermal protection system and European Service Module, the first of two planned external evaluations for the spacecraft. Teams conducted this survey early in the mission to provide detailed images of the spacecraft’s external surfaces after it has flown through the portion of Earth’s orbit where the majority of space debris resides. The second inspection is required during the return phase to assess the overall condition of the spacecraft several days before re-entry. During both inspections, the Integrated Communications Officer, or INCO, commands cameras on the four solar array wings to take still images of the entire spacecraft, allowing experts to pinpoint any micrometeoroid or orbital debris strikes. The team in mission control at NASA’s Johnson Space Center in Houston will review the imagery following the survey. 

Over the past few days, a team assessed anomalous star tracker data that correlated with thruster firings. Star trackers are sensitive cameras that take pictures of the star field around Orion. By comparing the pictures to its built-in map of stars, the star tracker can determine which way Orion is oriented. Teams now understand the readings and there are no operational changes.

NASA also has received updates from teams associated with the 10 CubeSats that were delivered to space on a ring attached to the Space Launch System rocket’s upper stage. All 10 CubeSats were successfully deployed via timer from the adapter. The CubeSats’ individual missions are separate from Artemis I. The small satellites, each about the size of a shoebox, are inherently high-risk, high-reward and the teams are in various stages of mission operations or troubleshooting in some cases. 

NASA hosted a briefing Friday previewing Orion’s arrival to the lunar sphere of influence. To follow the mission real-time, you can track Orion during its mission around the Moon and back, and check the NASA TV schedule for updates on the next televised events. The first episode of Artemis All Access is now available as a recap of the first three days of the mission with a look ahead to what’s coming next, and the latest imagery and videos can be found on the Johnson Space Center Flickr.

 

Artemis I – Flight Day Two: Orion Continues Toward Moon, Callisto Activated

Three-fourths of Earth is seen in black and white, suspended in the blackness of space. Earth only takes up a small portion of the center of the image, and wispy clouds are visible above its surface.
On the second day of the 25.5-day Artemis I mission, Orion used its optical navigation camera to snap black and white photos of planet Earth. Orion uses the optical navigation camera to capture imagery of the Earth and the Moon at different phases and distances, providing an enhanced body of data to certify its effectiveness as a method for determining its position in space for future missions under differing lighting conditions.

NASA’s uncrewed Orion spacecraft is on the second day of its journey heading toward the Moon as part of a planned 25.5-day flight test. Orion performed a second outbound trajectory burn at 6:32 a.m. EST using the auxiliary thrusters on the European Service Module, which will be used for most trajectory correction burns.

Teams also collected additional images with the optical navigation camera and activated the Callisto payload, a technology demonstration from Lockheed Martin in collaboration with Amazon and Cisco. Callisto is located in the Orion cabin and will test voice activated and video technology that could assist future astronauts on deep space missions.

Yesterday, flight controllers moved each solar array to a different position as the Integrated Communications Officer, or INCO, tested the WiFi transfer rate between the camera on the tip of the solar array panels and the camera controller. The goal was to determine the best position to most efficiently transfer imagery files.

NASA’s Johnson Space Center will host a briefing previewing the pair of maneuvers required to enter distant retrograde orbit Friday at 5 pm. Live coverage will be available on the agency’s website, NASA Television, and the NASA app.

Read the Artemis I reference guide to learn more about Orion and follow along with the Artemis I mission to learn more.