Artemis I – Flight Day 15: Team Polls “Go” For Distant Retrograde Orbit Departure

art001e000669 (Nov. 27, 2022) On flight day 12 of the 25.5-day Artemis I mission, a camera on the tip of one of Orion’s solar arrays captured the Moon as Orion travels in distant retrograde orbit around the Moon.

The Artemis I mission management team met today to review the overall status of the flight test and polled “go” for Orion to depart from its distant retrograde orbit, where it has been since Nov. 25. Orion will conduct a burn to depart the orbit at 3:53 p.m. CST Thurs., Dec. 1 and begin its trek back toward Earth.  

“We are continuing to collect flight test data and buy down risk for crewed flight,” said Mike Sarafin, Artemis mission manager. “We continue to learn how the system is performing, where our margins are, and how to operate and work with the vehicle as an integrated team.” 

On Flight Day 15, Orion also performed a planned orbit maintenance burn to maintain the spacecraft’s trajectory and decrease its velocity ahead of its Thursday departure from a distant lunar orbit. During the burn, Orion used six of its auxiliary thrusters on the European Service module to fire for 95 seconds. The burn was initially planned for a shorter duration but was lengthened as part of the team’s effort to add test objectives to the mission. The 95-second burn provided additional data to characterize the thrusters and the radiative heating on the spacecraft’s solar array wings to help inform Orion’s operational constraints. All previous thruster burns were 17 seconds or less.  

Orion’s European-built service module has provided the propulsive capabilities to adjust the spacecraft’s course in space via its 33 engines of various types, and serves as Orion’s powerhouse, supplying it will electricity, thermal control, and air and water for future crews, in addition to propulsion. Artemis I is the first time NASA is using a European-built system as a critical element to power an American spacecraft. Provided by ESA (European Space Agency) and its partner Airbus Defence and Space, the service module extends NASA’s international cooperation from the International Space Station into deep space exploration.  

NASA is continuing to extend its relationships with its international partners to explore the Moon under Artemis. The agency’s Gateway, a multi-purpose outpost in development to orbit the Moon that will provide essential support for long-term lunar exploration, includes contributions from ESA as well as the Canadian Space Agency and the Japan Aerospace Exploration Agency. Agencywide, NASA has more than 600 active international agreements with organizations and space agencies around the world. 

Teams also elected to add four additional test objectives to Orion’s return trip to Earth to gather additional data on the spacecraft’s capabilities. Two will evaluate whether opening and closing a valve the pressure control assembly affects a slow leak rate in that system; a third will demonstrate Orion’s ability to perform attitude maneuvers at the rate that will be necessary for a test on Artemis II; and the fourth will test its capability to fly in a three degree of freedom attitude control mode, as opposed to the six degree of freedom mode it typically flies in.

Prior to today’s orbital maintenance burn, a total of 5,681 pounds of propellant had been used, 203 pounds less than values expected before launch. Some 2,004 pounds of margin is available beyond what is planned for use during the mission, a 94-pound increase above prelaunch expected values. 

Just after 4 p.m. CST on Nov. 30, Orion was traveling 253,079 miles from Earth and 50,901 miles from the Moon, cruising at 2,052 mph. 

Coverage of the distant retrograde orbit departure burn will begin Thursday at 3:30 p.m. CST, with the burn scheduled to occur at 3:53 p.m. Watch live on NASA TV, the agency’s website, and the NASA app. 

View the latest imagery of the Moon, Earth, and Orion on NASA’s Johnson Space Center Flickr account and Image and Video Library. When bandwidth allows, views of the mission are available in real-time. 

Artemis I — Flight Day 13: Orion Goes the (Max) Distance

(Nov. 28, 2022) On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.

NASA’s uncrewed Orion spacecraft reached the farthest distance from Earth it will travel during the Artemis I mission — 268,563 miles from our home planet — just after 3 p.m. CST. The spacecraft also captured imagery of Earth and the Moon together throughout the day, including of the Moon appearing to eclipse Earth. 

Reaching the halfway point of the mission on Flight Day 13 of a 25.5 day mission, the spacecraft remains in healthy condition as it continues its journey in distant retrograde orbit, an approximately six-day leg of its larger mission thousands of miles beyond the Moon.  

“Because of the unbelievable can-do spirit, Artemis I has had extraordinary success and has completed a series of history making events,” said NASA Administrator Bill Nelson. “It’s incredible just how smoothly this mission has gone, but this is a test. That’s what we do – we test it and we stress it.” 

Engineers had originally planned an orbital maintenance burn today but determined it was not necessary because of Orion’s already precise trajectory in distant retrograde orbit. Based on Orion’s performance, managers are examining adding seven additional test objectives to further characterize the spacecraft’s thermal environment and propulsion system to reduce risk before flying future missions with crew. To date, flight controllers have accomplished or are in the process of completing 37.5% of the test objectives associated with the mission, with many remaining objectives set to be evaluated during entry, descent, splashdown, and recovery. 

NASA’s Exploration Ground Systems team and the U.S. Navy are beginning initial operations for recovery of Orion when it splashes down in the Pacific Ocean. The team will deploy Tuesday for training at sea before return to shore to make final preparations ahead of splashdown. 

Managers also closed out today a team formed earlier in the mission to investigate readings associated with the spacecraft’s star trackers after determining the hardware is performing as expected and initially suspect readings are a byproduct of the flight environment.   

Flight controllers also have completed 9 of 19 translational burns and exercised the three types of engines on Orion – the main engine, auxiliary thrusters, and reaction control system thrusters. Approximately 5,640 pounds of propellants have been used, which is about 150 pounds fewer than prelaunch expected values. More than 2,000 pounds of margin remain available beyond what teams plan to use for the mission, an increase of more than 120 pounds from prelaunch expected values. So far, teams have already sent more than 2,000 files from the spacecraft to Earth. 

Just before 8 p.m. EST, Orion was 268,457 miles from Earth and 43,138 miles from the Moon, cruising at 1,679 miles per hour.

To follow the mission real-time, you can track Orion during its mission around the Moon and back and watch live imagery from the spacecraft. Check the NASA TV schedule for updates on the next televised events. The latest imagery and videos can be found on the Johnson Space Center Flickr. 

Artemis I – Flight Day Eight: Orion Exits the Lunar Sphere Of Influence

(Nov. 22, 2022) Flight Day 7, Orion’s Optical Navigation camera captured the far side of the Moon, as the spacecraft orbited 81.1 miles above the surface, heading for a Distant Retrograde Orbit. Orion uses the optical navigation camera to capture imagery of the Earth and the Moon at different phases and distances, providing an enhanced body of data to certify its effectiveness under different lighting conditions as a way to help orient the spacecraft on future missions with crew.

On the eighth day of its mission, Orion continues to travel farther away from the Moon as it prepares to enter a distant retrograde orbit. The orbit is “distant” in the sense that it’s at a high altitude from the surface of the Moon, and it’s “retrograde” because Orion will travel around the Moon opposite the direction the Moon travels around Earth.  

Orion exited the gravitational sphere of influence of the Moon Tuesday, Nov. 22, at 9:49 p.m. CST at a lunar altitude of 39,993 miles. The spacecraft will reach its farthest distance from the Moon Friday, Nov 25, just before performing the next major burn to enter the orbit. The distant retrograde orbit insertion burn is the second in a pair of maneuvers required to propel Orion into the highly stable orbit that requires minimal fuel consumption while traveling around the Moon.   

NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston unexpectedly lost data to and from the spacecraft at 12:09 a.m. for 47 minutes while reconfiguring the communication link between Orion and Deep Space Network. Teams have resolved the issue, and the spacecraft remains in a healthy configuration while engineers analyze data to determine the cause. 

While in transit to the distant retrograde orbit, engineers conducted the first part of the propellant tank slosh development flight test, called prop slosh, which is scheduled during quiescent, or less active, parts of the mission. The test calls for flight controllers to fire the reaction control system thrusters when propellant tanks are filled to different levels. Engineers measure the effect the propellant sloshing has on spacecraft trajectory and orientation as Orion moves through space. The test is performed after the outbound flyby burn and again after the return flyby burn to compare data at points in the mission with different levels of propellant onboard.  

Propellant motion, or slosh, in space is difficult to model on Earth because liquid propellant moves differently in tanks in space than on Earth due to the lack of gravity. The reaction control thrusters are located on the sides of the service module in six sets of four. These engines are in fixed positions and can be fired individually as needed to move the spacecraft in different directions or rotate it into any position. Each engine provides about 50 pounds of thrust. 

As of Wednesday, Nov. 23, a total of about 3,971 pounds of propellant has been used, about 147 pounds less than prelaunch expected values. There is more than 2,000 pounds of margin available over what is planned for use during the mission, an increase of about 74 pounds from prelaunch expected values.  

Just after 1 p.m. CST on Nov. 23, Orion was traveling about 212,437 miles from Earth and was more than 48,064 miles from the Moon, cruising at 2,837 miles per hour.    

To follow the mission real-time, you can track Orion during its mission around the Moon and back, view a live stream from Orion’s cameras, and find the latest imagery and videos on Flickr. The second episode of Artemis All Access is now available as a recap of the last few days of the mission with a look ahead to what’s coming next.  

Artemis I – Flight Day Seven: Orion to Test Search Acquire and Track Mode, Exit Lunar Sphere of Influence

The Orion spacecraft is now on its seventh day into the Artemis I mission, a flight test around the Moon, paving the way for astronauts to fly on future missions. At 12:02 a.m. CST, Orion completed the fifth outbound trajectory correction by firing the European service module’s auxiliary engines for 5.9 seconds, which changed Orion’s velocity by 3.2 feet per second.  

The R-4D-11 auxiliary engines are a variant of the flight proven R-4D engine, which was originally developed for the Apollo program and was employed on every mission to the Moon. The engines are positioned at the bottom of the service module in four sets of two, and each provide about 100 pounds of thrust. In total, Orion’s highly capable service module has 33 engines of various sizes and serves as the powerhouse for the spacecraft, providing propulsion capabilities that enable Orion to go around the Moon and back on its exploration missions.  

The team in the White Flight Control Room at NASA’s Johnson Space Center in Houston continued testing the spacecraft’s star trackers to determine their sensitivity to thermal variations as part of planned testing, and engineers used the optical navigation system to gather additional imagery of the Moon. The star trackers and optical navigation system are part of Orion’s advanced guidance, navigation, and control system, responsible for always knowing where the spacecraft is located in space, which way it’s pointed, and where it’s going. It even controls the propulsion system to keep the spacecraft on the correct path. The optical navigation can serve later in this mission and in future missions as a backup, ensuring a safe trip home should the spacecraft lose communications. 

Download this video in high-resolution.

Overnight, flight controllers will conduct the search acquire and track (SAT) mode developmental test objective. SAT mode is an algorithm intended to recover and maintain communications with Earth after loss of Orion’s navigation state, extended loss of communications with Earth, or after a temporary power loss that causes Orion to reboot hardware. To test the algorithm, flight controllers will command the spacecraft to enter SAT mode, and after about 15 minutes, restore normal communications. Testing SAT mode will give engineers confidence it can be relied upon as the final option to fix a loss of communications when crew are aboard. 

Orion will exit the lunar sphere of influence, or the gravitational pull of the Moon, at 10:31 p.m. CST and continue traveling toward distant retrograde orbit. The next live event will be NASA Television coverage of the distant retrograde orbit insertion burn, scheduled for 4:30 p.m. EST on Friday, Nov. 25. Shortly before entering the orbit, Orion will travel about 57,287 miles beyond the Moon at its farthest point from the lunar surface during the mission. View the Artemis I mission map to see Orion’s path in space.  

On Saturday, Nov. 26, Orion will pass the record set by Apollo 13 for the farthest distance traveled by a spacecraft designed for humans at 248,655 miles from Earth, and the spacecraft will reach its maximum distance from Earth of 268,552 miles Monday, Nov. 28.  

Just after 4 p.m. CST on Nov. 22, Orion was traveling over 208,000  miles from Earth and was over 36,000  miles from the Moon, cruising at over 3,000  miles per hour.   

Listen to a replay of the Twitter Spaces NASA hosted Tuesday, Nov. 22, with NASA Flight Director Gerry Griffin, Jim Geffre from Orion, Nijoud Merancy with the Artemis program and Jennifer Ross-Nazzal with the NASA history office to discuss the milestone. 

Learn more about Orion’s systems that were designed for deep space missions with astronauts. 

Orion Successfully Completes Lunar Flyby, Re-acquires Signal with Earth

Artemis I Earthrise

Orion re-acquired signal with NASA’s Deep Space Network, at 7:59 a.m. EST after successfully performing the outbound powered flyby burn at 7:44 a.m. EST with a firing of the orbital maneuvering system engine for 2 minutes and 30 seconds to accelerate the spacecraft at a rate of more than 580 mph. At the time of the burn, Orion was 328 miles above the Moon, travelling at 5,023 mph. Shortly after the burn, Orion passed 81 miles above the Moon, travelling at 5,102 mph. At the time of the lunar flyby, Orion was more than 230,000 miles from Earth.  

The outbound powered flyby burn is the first of two maneuvers required to enter the distant retrograde orbit around the Moon. The spacecraft will perform the distant retrograde orbit insertion burn Friday, Nov. 25, using the European Service Module. Orion will remain in this orbit for about a week to test spacecraft systems. The distant retrograde will take Orion 40,000 miles past the Moon before it returns to Earth. Orion’s greatest distance from the Earth will be Monday, Nov. 28 at 3:05 p.m. CST at more than 268,500 miles. Orion’s greatest distance from the Moon will be on Friday, Nov. 25 at 3:53 p.m. CST at more than 57,250 miles. 

The Deep Space Network, managed by NASA’s Jet Propulsion Laboratory in Southern California, handles communications for Artemis I beyond low-Earth orbit. This includes the mission’s trajectory corrections, powered flyby burns, and insertion into and departure from distant retrograde orbit, while the Near Space Network provides supplemental navigation data with assistance from the Near Space Network’s tracking and data relay satellite constellation. 

The Deep Space Network consists of three facilities spaced equidistant from each other – approximately 120 degrees apart in longitude – around the world. These sites are at Goldstone, near Barstow, California; near Madrid, Spain; and near Canberra, Australia. The strategic placement of these sites permits constant communication with spacecraft as our planet rotates – before a distant spacecraft sinks below the horizon at one site, another site can pick up the signal and carry on communicating. Orion initially regained signal with the Madrid ground station after the lunar flyby and then transitioned signal to the Goldstone station. 

NASA will host a news conference on NASA T V at 5 p.m. EST to discuss Orion’s outbound powered flyby burn and provide an update on post-launch assessments of the Space Launch System rocket and Exploration Ground Systems.  

Participants will include: 

  • Mike Sarafin, Artemis I mission manager  
  • Judd Frieling, NASA flight director  
  • Howard Hu, Orion Program manager 

NASA TV coverage of the distant retrograde orbit insertion burn will begin at 4:30 p.m. EST Friday, with the burn scheduled to occur at 4:52 p.m. 

Learn more about distant retrograde orbit and NASA’s communication and navigation networks. See which antennas are communicating with Orion in real-time on Deep Space Network Now and track Orion via the Artemis Real-Time Orbit Website, or AROW. 

Artemis I – Flight Day Four: Testing WiFi Signals, Radiator System, GO for Outbound Powered Flyby

Orion snapped this high-resolution selfie in space with a camera mounted on its solar array wing during a routine external inspection of the spacecraft on the third day into the Artemis I mission.

On Saturday, Nov. 19, the Mission Management Team polled “go” for Orion’s outbound powered flyby past the Moon. NASA will cover the flyby live on NASA TV, the agency’s website, and the NASA app starting at 7:15 a.m. EST Monday, Nov. 21. The burn is planned for 7:44 a.m. Orion will lose communication with Earth as it passes behind the Moon from 7:25 a.m. through 7:59 a.m., making its closest approach of approximately 80 miles from the surface at 7:57 a.m. 

During flight day four, flight controllers moved each solar array to a different position to test the strength of the WiFi signal with the arrays in different configurations. The Integrated Communications Officer, or INCO, tested the WiFi transfer rate between the camera on the tip of the solar array panels and the camera controller. The goal was to determine the best position to most efficiently transfer imagery files. Teams learned that having multiple cameras on at once can impact the WiFi data rate, and therefore, future solar array wing file transfer activities will be accomplished from one solar array wing at a time to optimize transfer time. 

The Emergency, Environmental, and Consumables Manager, or EECOM, tested Orion’s radiator system. Two radiator loops on the spacecraft’s European Service Module help expel excess heat generated by different systems throughout the flight. Flight controllers are testing sensors that maintain the coolant flow in the radiator loops, switching between different modes of operation and monitoring performance. During speed mode, the coolant pumps operate at a constant rate. This is the primary mode used during Artemis I. Flow control mode adjusts the pump speed as needed to maintain a constant flow through the system. The flight test objective is to monitor system performance and the accuracy of flow sensors to characterize the stability of this mode of operation.  Each loop is monitored in flow control mode for 72 hours to provide sufficient data for use on future missions. 

In a white clean room, employees dressed in white observe The Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell. The Orion star trackers are highlighted about halfway up the spacecraft.
Star trackers are sensitive cameras that take pictures of the star field around Orion. By comparing the pictures to its built-in map of stars, the star tracker can determine which way Orion is oriented. The star trackers on Orion are located on the European Service Module on either side of the optical navigation camera. This Nov. 2019 photo was taken as the Orion crew and service module stack for Artemis I was lifted out of the Final Assembly and Test (FAST) cell.

As part of planned testing throughout the mission, the guidance, navigation, and control officer, also known as GNC, performed the first of several tests of the star trackers that support Orion’s navigation system. Star trackers are a navigation tool that measure the positions of stars to help the spacecraft determine its orientation. In previous flight days, engineers evaluated initial data to understand star tracker readings correlated to thruster firings.  

Engineers hope to characterize the alignment between the star trackers that are part of the guidance, navigation and control system and the Orion inertial measurements units, by exposing different areas of the spacecraft to the Sun and activating the star trackers in different thermal states.  

Just after 5:30 p.m. on Nov. 19, Orion had traveled 222,823 miles from Earth and was 79,011 miles from the Moon, cruising at 812 miles per hour. You can track Orion via the Artemis Real-Time Orbit Website, or AROW. 

Overnight, engineers in mission control will uplink large data files to Orion to better understand how much time it takes for the spacecraft to receive sizeable files. On flight day five, Orion will undergo its third planned outbound trajectory correction burn to maneuver the spacecraft and stay on course to the Moon. 

Learn more about the console positions in mission control and the additional test objectives planned throughout the mission. 

Artemis I – Flight Day Two: Orion Continues Toward Moon, Callisto Activated

Three-fourths of Earth is seen in black and white, suspended in the blackness of space. Earth only takes up a small portion of the center of the image, and wispy clouds are visible above its surface.
On the second day of the 25.5-day Artemis I mission, Orion used its optical navigation camera to snap black and white photos of planet Earth. Orion uses the optical navigation camera to capture imagery of the Earth and the Moon at different phases and distances, providing an enhanced body of data to certify its effectiveness as a method for determining its position in space for future missions under differing lighting conditions.

NASA’s uncrewed Orion spacecraft is on the second day of its journey heading toward the Moon as part of a planned 25.5-day flight test. Orion performed a second outbound trajectory burn at 6:32 a.m. EST using the auxiliary thrusters on the European Service Module, which will be used for most trajectory correction burns.

Teams also collected additional images with the optical navigation camera and activated the Callisto payload, a technology demonstration from Lockheed Martin in collaboration with Amazon and Cisco. Callisto is located in the Orion cabin and will test voice activated and video technology that could assist future astronauts on deep space missions.

Yesterday, flight controllers moved each solar array to a different position as the Integrated Communications Officer, or INCO, tested the WiFi transfer rate between the camera on the tip of the solar array panels and the camera controller. The goal was to determine the best position to most efficiently transfer imagery files.

NASA’s Johnson Space Center will host a briefing previewing the pair of maneuvers required to enter distant retrograde orbit Friday at 5 pm. Live coverage will be available on the agency’s website, NASA Television, and the NASA app.

Read the Artemis I reference guide to learn more about Orion and follow along with the Artemis I mission to learn more.

Artemis I Update: Rocket’s Upper Stage Powered Up, Countdown on Track

The Space Launch System rocket’s interim cryogenic propulsion stage (ICPS) has been powered up, the NASA test director has given the “go” for booster power up, and all non-essential personnel have left the launch pad area in preparation for propellant loading operations.

At 10:53 p.m. EDT, or L-9 hours, 40 minutes, the launch team is expected to reach a planned two hour, 30-minute built-in hold. During this time, the mission management team will review the status of operations, receive a weather briefing, and make a “go” or “no-go” decision to proceed with tanking operations.

Tanking milestones include filling the rocket’s core stage with several hundred thousand gallons of liquid oxygen and liquid hydrogen. This will occur over a series of different propellant loading milestones to fill and replenish the tanks.

At midnight, NASA TV coverage begins with commentary of tanking operations to load propellant into the SLS rocket. Full coverage begins at 6:30 a.m.

Teams Press Ahead Toward Artemis I Launch in Late August

Final work continues to prepare the Space Launch System rocket and Orion spacecraft at NASA’s Kennedy Space Center in Florida for Artemis I. Teams have identified placeholder dates for potential launch opportunities. They include: 

      • Aug. 29 at 8:33 a.m. EDT (Two-hour launch window); Landing Oct. 10 
      • Sept. 2 at 12:48 p.m. (Two-hour launch window); Landing Oct. 11 
      • Sept. 5 at 5:12 p.m. (90-minute launch window); Landing Oct. 17 

Technicians now are testing the newly replaced seals on the quick disconnect of the tail service mast umbilical to ensure there are no additional leaks. The seals were replaced to address a hydrogen leak during the final wet dress rehearsal in June. Following testing, teams will complete closeouts to ready that section for flight.  

Engineers are also finishing installation of the flight batteries. Teams installed the batteries for the solid rocket boosters and interim cryogenic propulsion stage this week and will install the core stage batteries next week.  

On Orion, technicians installed Commander Moonikin Campos, who is one of three “passengers” flying aboard Orion to test the spacecraft’s systems.  Commander Campos’s crew mates, Helga and Zohar, will be installed in the coming weeks.  

NASA’s Artemis I Moon Rocket Arrives at Launch Pad Ahead of Tanking Test 

At approximately 8:20 a.m. EDT, NASA’s Artemis I Moon rocket arrived at the spaceport’s launch complex 39B after an eight-hour journey ahead of the next wet dress rehearsal attempt.  

Teams will work to secure the Space Launch System rocket and Orion spacecraft and mobile launcher to ground support equipment at the launch pad and ensure that the rocket is in a safe configuration in preparation of the upcoming tanking test. NASA is streaming a live view of the rocket and spacecraft at the pad on the Kennedy Newsroom YouTube channel.