Part 1: Artificial Intelligence and NASA’s First Robotic Lunar Rover

When NASA’s VIPER (short for Volatiles Investigating Polar Exploration Rover) lands on the surface of the Moon on a mission to better understand the environment where NASA plans to send astronauts as part of the increasingly complex Artemis missions, its journey will be guided by the human ingenuity of its human team – and several key tools that use artificial intelligence. From helping the science team choose a landing site at the lunar mountain Mons Mouton, to planning out its path, the VIPER team has developed and used artificial intelligence algorithms to help assess risk and optimize decision making.

Artificial intelligence is a wide field, and the resulting techniques are still far from the self-aware robots of science fiction. Instead, the field contributes tools to help space missions deal with some of the uncertainties that come with planning and executing a real-time mission in a challenging, largely unexplored environment.

“AI allows VIPER to be more adaptable, flexible, resilient, and efficient,” said Edward Balaban, VIPER’s lead for strategic planning at NASA’s Ames Research Center in California’s Silicon Valley. “It’s a tool that allows us to use change as a strength.”

These tools don’t replace human input – NASA scientists design these systems in the first place, input the relevant data, and then use the AI’s outputs as a baseline for mission-related decisions. During VIPER mission operations, the team plans to use AI interactively to help map out various routes for the operations team members to choose from. This AI system is called SHERPA – the System Health Enabled Real-time Planning Advisor.

An artist’s concept of the completed design of NASA’s Volatiles Investigating Polar Exploration Rover, or VIPER. VIPER will get a close-up view of the location and concentration of ice and other resources at the Moon’s South Pole, bringing us a significant step closer to NASA’s ultimate goal of a long-term presence on the Moon – making it possible to eventually explore Mars and beyond.
An artist’s concept of the completed design of NASA’s Volatiles Investigating Polar Exploration Rover, or VIPER. VIPER will get a close-up view of the location and concentration of ice and other resources at the Moon’s South Pole, bringing us a significant step closer to NASA’s ultimate goal of a long-term presence on the Moon – making it possible to eventually explore Mars and beyond.

Traversing the Lunar Surface

The VIPER mission will run for about 100 days after landing on Mons Mouton near the lunar South Pole. Throughout its journey, VIPER will make many stops at several science stations – sites selected for their potential to achieve the mission’s science objectives. These objectives include understanding the factors that control the distribution of water on the surface of the Moon, understanding the delivery history of water to the Moon, determining the origin of lunar water and other , and determining how volatiles evolve over time after they are deposited on the surface. How the rover moves from one of these sites to the other, and where it can find a safe place, referred to as a “safe haven,” to pause while temporarily out of communications with Earth — without getting stuck in an extremely cold and dark shadow — is a complex question requiring analysis of vast amounts of data. Factors such as the Moon’s rugged terrain, VIPER’s needs and limits, and the potential of the various science stations all need to be considered.

SHERPA is able to process all these factors and present the VIPER team with several options while planning the rover’s traverse before mission operations. It can assess the various risks of different routes by running thousands of mission simulations, and even provide contingency branches for where to go if something changes or doesn’t go according to plan. But after launch, SHERPA’s work won’t be over – it’ll also be used for real-time, dynamic problem solving, giving the VIPER team potential solutions to adjust the rover’s traverse when it’s presented with new scientific or operational information.

A traverse from SHERPA isn’t just a one-and-done plan. The AI will provide a template that humans consider and revise. Any changes made are then run back through SHERPA to determine if it’s feasible or if there are any issues. Those revisions won’t be corrections in the traditional sense or enacted by default, but allow team members to make adjustments based on factors the AI may not be able to consider, such as constraints related to staffing for the team members driving the rover or operating the rover science instruments.

Another set of techniques from a subfield of AI known as temporal constraint planning helps VIPER make its to-do list, by essentially presenting an algorithm with the problem of scheduling a set of activities within a certain time.

Follow us here or @NASAAmes for a follow-up post with more details about how artificial intelligence supports NASA’s VIPER mission and efforts to explore the unknown in space for the benefit of humanity.

NASA Logo Installed on Lander for First Robotic Artemis Moon Flight 

Teams with Astrobotic install the NASA meatball decal on Astrobotic’s Peregrine lunar lander on Tuesday, Nov. 14, 2023, at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida. Peregrine will launch onboard a United Launch Alliance Vulcan rocket targeted for no earlier than Dec. 24, 2023, from Launch Complex 41 at Cape Canaveral Space Force Station in Florida.
Teams with Astrobotic install the NASA meatball decal on Astrobotic’s Peregrine lunar lander on Tuesday, Nov. 14, 2023, at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida. Peregrine will launch onboard a United Launch Alliance Vulcan rocket targeted for no earlier than Dec. 24, 2023, from Launch Complex 41 at Cape Canaveral Space Force Station in Florida. The lander will carry a suite of NASA payloads to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis program. Photo credit: NASA/Isaac Watson

Teams have installed the NASA meatball logo onboard Astrobotic’s Peregrine lunar lander as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis program ahead of its upcoming launch on Dec. 24 from Launch Complex 41 at Cape Canaveral Space Force Station in Florida.   

Peregrine will carry NASA payloads to a mare – an ancient hardened lava flow – outside of the Gruithuisen Domes, a geologic enigma along the mare/highlands boundary on the northeast border of Oceanus Procellarum, or Ocean of Storms, the largest dark spot on the Moon. The payloads will investigate the lunar exosphere, thermal properties of the lunar regolith, hydrogen abundances in the soil at the landing site, magnetic fields, and conduct radiation environment monitoring.  

After arriving on Oct. 30 at the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida, teams with Astrobotic and ULA (United Launch Alliance) are finishing final preparations before they integrate Peregrine with ULA’s Vulcan rocket.  

While NASA is the primary customer purchasing lunar delivery services, CLPS vendors also work with other customers to send non-NASA payloads to the Moon. CLPS providers are responsible for managing their activities to ensure they are compliant with NASA schedule requirements. Astrobotic will keep the agency informed of the launch date, lunar landing date, and duration of lunar surface operations, as well as provide updates on the temperature the payloads will experience during transit to the Moon and at the lunar South Pole. 

A successful landing will help prove the CLPS model for commercial payload deliveries to the lunar surface. As a CLPS customer, NASA is investing in lower-cost methods of regular Moon deliveries and aims to be one many customers onboard CLPS flights. The robotic deliveries will help deliver agency science and technology demonstrations to the Moon for the benefit of all. 

Learn more about CLPS activities by following the Artemis blog, @NASAMoon and @NASAArtemis on Twitter, as well as the NASA Moon Facebook and Artemis Instagram accounts. 

NASA Seeks More Lunar Science, Technology Experiments for Artemis Program

With five robotic flights to the Moon already booked through 2023, and a sixth award expected soon, NASA is seeking suites of new science investigations and technology experiments for future commercial lunar deliveries as part of the Artemis program.

The agency issued its Payloads and Research Investigations on the Surface of the Moon (PRISM) Nov. 5, for payloads to be delivered on flights to the lunar surface in late 2023 and early 2024. This call for payloads is expected to be the first of an annual call for payloads that will make up the Science Mission Directorate’s portion of the manifest for future flights within the agency’s Commercial Lunar Payloads Services, or CLPS, initiative.

“Demand for access to the Moon is rapidly increasing as our Artemis program takes shape, and we’re proud to support a growing lunar economy with our CLPS project,” said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “We’re on track for two flights to the Moon per year, with the first six already ordered or soon awarded. This new call will enable breakthrough science, and especially advance our understanding of the Moon ahead of a human return in 2024.”

The formal PRISM solicitation builds on an earlier Request for Information that requested payload concepts from the U.S. science community for lunar surface investigations. Responses to this RFI informed and guided upcoming solicitations for opportunities to send instruments to the Moon. NASA is seeking science-driven suites of instruments and technology demonstrations for delivery to the Reiner Gamma (lunar magnetic anomaly on the lunar near side) in 2023 and the Schrödinger Basin (impact melt on the lunar far side) of the Moon in 2024.

For the initial phase, Step 1 responses to the solicitation are due Dec. 11, 2020. Proposals must identify only one of the two offered locations. Some technology development and maturation within the proposed project is allowed, but the science justification and ability to deliver on schedule are top considerations for selection. Additional details are available in the formal solicitation online.

As part of the CLPS project, NASA has already made the following awards:

2021

    • Astrobotic and Intuitive Machines each have one task order award for deliveries in 2021. Astrobotic will carry 11 payloads to Lacus Mortis, a larger crater on the near side of the Moon, and Intuitive Machines will carry five payloads to the southwest portion of Mare Serenitatis, near the Montes Apenninus region on the Moon.

2022

    • Masten Space Systems has one task order award to deliver and operate eight payloads – with nine science and technology instruments – to the lunar South Pole.
    • NASA awarded Intuitive Machines a task order to deliver the PRIME-1 drill and mass spectrometer to the Moon by December of 2022.

2023

    • NASA awarded a task order to Astrobotic to deliver the agency’s VIPER rover to the lunar South Pole in late 2023.
    • By the end of the year NASA will select a vendor to deliver a suite of payloads to study geophysics within the Mare Crisium basin on the Moon in 2023.

NASA and its partners will continue to study and explore more of the Moon in the coming years as part of the Artemis program. The agency continues to advance its modern lunar exploration program and is preparing to establish a sustainable presence at the lunar South Pole by the end of the decade. Knowledge gained on and around the Moon will help prepare the agency for its next giant leap in exploration – human exploration of Mars.

Earth's Moon
Credit: NASA

Artemis Instrument Ready for Extreme Moon Temperatures

Engineers and technicians at NASA’s Kennedy Space Center in Florida install the radiator for the Mass Spectrometer Observing Lunar Operations (MSolo) instrument inside the Space Station Processing Facility on Sept. 25, 2020. Photo credit: NASA/Glenn Benson

A versatile instrument designed to help analyze the chemical makeup of lunar landing sites and study water on the Moon as part of the Artemis program has completed an important step in its final assembly.

Teams working on the Mass Spectrometer Observing Lunar Operations, or MSolo, at NASA’s Kennedy Space Center in Florida installed the radiator – a critical component that will keep the instrument’s temperature stable in the extreme heat and cold it will encounter on the Moon.

MSolo is a commercial off-the-shelf mass spectrometer modified to work in space. NASA will use MSolo to identify molecules on the surface of the Moon. Multiple MSolo instruments are destined for the Moon via the help of NASA’s commercial partners, landing scientific instruments and technology demonstrations on the lunar surface as part of the Commercial Lunar Payload Services (CLPS) initiative.

NASA has scheduled MSolo instruments to launch on future robotic missions starting in 2021 at Lacus Mortis, a large crater on the near side of the Moon. MSolo is a key component of the Polar Resources Ice Mining Experiment, or PRIME-1, instrument suite that will use a drill to harvest ice just below the lunar surface in 2022. Later, the technology will be one of three instruments on board NASA’s water-hunting Volatiles Investigating Polar Exploration Rover, VIPER, scheduled to launch to the Moon’s South Pole in late 2023.

On VIPER, the MSolo instrument will help evaluate subsurface soil cuttings brought up by a 3-foot drill in search of water ice and other volatiles that future missions could use as resources. The mission will create the most detailed view of the Moon’s water to date – helping to pave the way for the lunar surface missions with crew beginning in 2024.

NASA Selects Astrobotic to Fly Water-Hunting Rover to the Moon

Illustration of NASA's Volatiles Investigating Polar Exploration Rover (VIPER) on the surface of the Moon
Illustration of NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) on the surface of the Moon. Credits: NASA Ames/Daniel Rutter

NASA has awarded Astrobotic of Pittsburgh $199.5 million to deliver NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) to the Moon’s South Pole in late 2023.

The water-seeking mobile VIPER robot will help pave the way for astronaut missions to the lunar surface beginning in 2024 and will bring NASA a step closer to developing a sustainable, long-term presence on the Moon as part of the agency’s Artemis program.

>>Read more