Orion Spacecraft Goes ‘Shields Up’ for Artemis I

The four ogive fairings for the Orion Artemis I mission are installed on the launch abort system assembly inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida on Aug. 20, 2021.
The four ogive fairings for the Orion Artemis I mission are installed on the launch abort system assembly inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida on Aug. 20, 2021. Photo credit: NASA/Kim Shiflett

Teams at NASA’s Kennedy Space Center in Florida are putting the final touches on the Orion spacecraft for the Artemis I mission by connecting the ogive fairings for the launch abort system (LAS) assembly.  Pronounced oh-jive, the ogive fairings consist of four protective panels, and their installation will complete the LAS assembly.

Technicians and engineers from the center’s Exploration Ground Systems and contractor Jacobs recently finished attaching the launch abort tower to the top of the Orion crew module. They then began lifting and mating the lightweight fairings, which will shield the crew module from the severe vibrations and sounds it will experience during launch. One of the fairing panels has a hatch to allow access to the crew module before launch.

During Artemis missions, the 44-foot-tall LAS will detach from the spacecraft when it is no longer needed, shortly after launching on the Space Launch System (SLS) rocket, to lighten the journey to the Moon. Although the abort motors will not be active on the uncrewed Artemis I flight test, the system is intended to protect astronauts on future missions if a problem arises during launch or ascent by pulling the spacecraft away from a failing rocket.

Once LAS installation is complete, the spacecraft will leave the Launch Abort System Facility and continue on its path to the pad, making its way to the spaceport’s Vehicle Assembly Building to be integrated with the SLS rocket ahead of the launch.

SLS Rocket Stage and Orion Share Space at Kennedy ahead of Artemis I

The ICPS is inside the Multi-Payload Process Facility at Kennedy Space Center on Feb. 18, 2021.
The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida for the Artemis I mission. Photo credit: NASA/Glenn Benson

The Space Launch System (SLS) rocket’s interim cryogenic propulsion stage (ICPS) moved into the Multi-Payload Processing Facility February 18, 2021, at NASA’s Kennedy Space Center in Florida alongside one of its flight partners for the Artemis I mission, the Orion spacecraft. Both pieces of hardware will undergo fueling and servicing in the facility ahead of launch by teams from NASA’s Exploration Ground Systems and their primary contractor, Jacobs Technology. The rocket stage and Orion will remain close during their journey to space.

The ICPS is moved into the Multi-Payload Process Facility on Feb. 18, 2021 at Kennedy Space Center.
The interim cryogenic propulsion stage is in view inside the Multi-Payload Processing Facility on Feb. 18, 2021, at Kennedy Space Center. Photo credit: NASA/Glenn Benson

Built by United Launch Alliance and Boeing, the ICPS will be positioned above the core stage and will provide the power needed to give Orion the big push it needs to break out of Earth orbit on a precise trajectory toward the Moon during Artemis I.

This is the first time since the shuttle program that two pieces of flight hardware have been processed inside this facility at the same time. Once final checkouts are complete, the ICPS and Orion will part ways on the ground and be reunited in the Vehicle Assembly Building for integration onto the SLS rocket.

Artemis I will be an integrated flight test of the SLS rocket and Orion spacecraft ahead of the crewed flights to the Moon. Under the Artemis program, NASA will land the first woman and the next man on the lunar surface and establish a sustainable presence at the Moon to prepare for human missions to Mars.

View additional photos here.