At approximately 11:45 a.m. today, a fire alarm was triggered in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The notification came when an arc flash event occurred at a connector on an electrical panel in High Bay 3. A spark landed on a rope marking the boundary of the work area. The rope began to smolder, workers pulled the alarm, and employees evacuated the building safely.
The incident occurred on the third floor of F-tower at the Mobile Launcher power connection. Technicians shut down power to the panel, and the center’s emergency responders declared the VAB safe for employees to return to work. There were no reported injuries, and the Artemis I rocket and spacecraft were not at risk.
The Artemis I vehicle and mobile launcher entered High Bay 3 earlier this morning after rolling back from Launch Complex 39B in advance of Hurricane Ian, which is expected to bring sustained tropical storm force winds to Kennedy as early as Wednesday evening. Engineers and technicians are evaluating the cause.
NASA is monitoring the forecast associated with the formation of a tropical depression in the Caribbean Sea while in parallel continuing to prepare for a potential launch opportunity on Tuesday, Sept. 27 during a 70-minute window that opens at 11:37 a.m. EDT.
Managers are initiating activities on a non-interference basis to enable an accelerated timeline for rolling back to the Vehicle Assembly Building (VAB) to protect the rocket, should it be necessary. Discussions about whether to remain at the launch pad or roll back to the VAB are on-going and based on the latest forecast predictions. NASA will make a decision on whether to remain at the launch pad or roll back using incremental protocols to take interim steps necessary to protect people and hardware with a final decision anticipated no later than Saturday. The step-wise decision making process over the next day lets the agency protect its employees by completing a safe roll in time for them to address the needs of their families, while allowing flexibility to hold the launch window should weather predictions improve.
NASA is grateful to its agency partners at NOAA, United State Space Force and the National Hurricane Center for giving us the highest quality products to protect our nation’s flight test to return us to the Moon.
Final work continues to prepare the Space Launch System rocket and Orion spacecraft at NASA’s Kennedy Space Center in Florida for Artemis I. Teams have identified placeholder dates for potential launch opportunities. They include:
Aug. 29 at 8:33 a.m. EDT (Two-hour launch window); Landing Oct. 10
Technicians now are testing the newly replaced seals on the quick disconnect of the tail service mast umbilical to ensure there are no additional leaks. The seals were replaced to address a hydrogen leak during the final wet dress rehearsal in June. Following testing, teams will complete closeouts to ready that section for flight.
Engineers are also finishing installation of the flight batteries. Teams installed the batteries for the solid rocket boosters and interim cryogenic propulsion stage this week and will install the core stage batteries next week.
On Orion, technicians installed Commander Moonikin Campos, who is one of three “passengers” flying aboard Orion to test the spacecraft’s systems. Commander Campos’s crew mates, Helga and Zohar, will be installed in the coming weeks.
Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians continue to prepare the Space Launch System rocket and Orion spacecraft for Artemis I.
During work to repair the source of a hydrogen leak, engineers identified a loose fitting on the inside wall of the rocket’s engine section, where the quick disconnect for the liquid hydrogen umbilical attaches. The component, called a “collet,” is a fist-sized ring that guides the quick disconnect during assembly operations. Teams will repair the collet by entering the engine section in parallel with other planned work for launch preparations. Technicians have replaced the seals on the quick disconnect of the tail service mast umbilical and will reattach the umbilical plate once the loose collet is addressed.
NASA continues to target the late August launch period and will identify a specific target launch date after engineers have examined the collet.
Technicians continue work associated with battery activations, and plan to turn on the core stage batteries this weekend, before they are installed on the rocket. Next up, teams will start the flight termination systems operations, which include removing the core stage and booster safe and arm devices for calibration and removing and replacing the command receiver decoders with the flight units. The safe and arm devices are a manual mechanism that put the flight termination system in either a “safe” or “arm” configuration while the command receiver decoders receive and decode the command on the rocket if the system is activated.
Meanwhile on the Orion spacecraft, teams installed a technology demonstration that will test digital assistance and video collaboration in deep space. Engineers are also conducting powered testing on the crew module and European service module heaters and sensors.
In this view looking up in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, all of the work platforms that surround the Artemis I Space Launch System (SLS) and Orion spacecraft are fully retracted on March 16, 2022. The Artemis I stack atop the mobile launcher will roll out to Launch Complex 39B atop the crawler-transporter 2 for a wet dress rehearsal ahead of launch. Photo credits: NASA/Glenn Benson
NASA’s new Moon rocket stands poised inside Kennedy Space Center’s iconic Vehicle Assembly Building ahead of its first journey to the launch pad. Comprised of NASA’s Space Launch System (SLS) rocket and Orion spacecraft, and sitting on its mobile launcher, the Artemis I Moon-bound rocket is ready to roll March 17 to Launch Complex 39B for its wet dress rehearsal test targeted to begin on April 1.
The dress rehearsal will demonstrate the team’s ability to load more than 700,000 gallons of cryogenic, or super-cold, propellants into the rocket at the launch pad, practice every phase of the launch countdown, and drain propellants to demonstrate safely standing down on a launch attempt. The test will be the culmination of months of assembly and testing for SLS and Orion, as well as preparations by launch control and engineering teams, and set the stage for the first Artemis launch.
The uncrewed Artemis I mission is the first flight of the SLS rocket and Orion spacecraft together. Future missions will send people to work in lunar orbit and on the Moon’s surface. With the Artemis missions, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and Orion, along with the commercial human landing system and the Gateway that will orbit the Moon, are NASA’s backbone for deep space exploration.
Live coverage for rollout begins at 5 p.m. EDT and will include live remarks from NASA Administrator Bill Nelson and other guests. Coverage will air on NASA Television, the NASA app, and the agency’s website.
Live, static camera views of the debut and arrival at the pad will be available starting at 4 p.m. EDT on the Kennedy Newsroom YouTube channel.
Teams retracted the first two of 20 platforms surrounding the Space Launch System rocket and Orion spacecraft that allow work on the integrated system in High Bay 3 inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. The first platforms to be retracted – which move like hydraulic kitchen drawers when moved – are those located near the launch abort system on Orion in preparation for rollout to Launch Complex 39B for the Artemis I wet dress rehearsal. Photo credits: NASA/Kim Shiflett
The first two of 20 platforms surrounding the Space Launch System (SLS) and Orion spacecraft that allow work on the integrated system inside the building were retracted for roll out to Launch Complex 39B. Teams retracted the platforms, which move like hydraulic kitchen drawers, near the launch abort system on the Orion spacecraft in anticipation of the roll.
Teams are continuing to install instrumentation on the SLS’s twin solid rocket boosters inside the VAB. Thousands of sensors and special instruments will monitor the rocket and spacecraft as they roll out for the first time on March 17 and make the four-mile journey to Launch Complex 39B, arriving on March 18. Engineers will capture as much data as possible on the performance of all the systems that are part of the rocket, spacecraft, ground systems used for rollout, and on the pad for propellant loading and other activities. Once all the rocket and spacecraft systems are inspected, the 322-foot-tall rocket will roll to the launch pad for the wet dress rehearsal test, which is scheduled to occur approximately two weeks after it arrives to 39B.
The last steps remaining before rollout include inspecting each piece of the rocket and spacecraft, including physically entering different components of SLS and, step-by-step, making sure SLS and Orion are ready for the trip to the launch pad. As inspections continue, the Kennedy ground systems team is working to remove equipment and scaffolding away from the rocket and will continue retracting the platforms until the entire rocket is revealed.
Inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, the work platforms have been retracted from around the Artemis I Space Launch System on Sept. 20, 2021. All 10 levels of platforms were extended and retracted as part of an umbilical test. During the test, several umbilical arms on the mobile launcher were extended to connect to the SLS rocket. They swung away from the launch vehicle, just as they will on launch day. NASA and Jacobs teams will continue conducting tests inside the VAB before transporting the Orion spacecraft to the assembly building and stacking it atop the SLS, completing assembly of the rocket for the Artemis I mission. Photo credit: NASA/Frank Michaux
Since replacing an engine controller on RS-25 engine number four that is on the Space Launch System (SLS) rocket core stage, NASA, and lead engines contractor Aerojet Rocketdyne, have performed a series of tests to ensure the engines and controllers are ready to support the Artemis I mission. All four engine controllers performed as expected during power up, as part of the Artemis I Core Stage engineering tests.
Aerojet Rocketdyne and its manufacturer of the engine flight controller, conducted numerous tests on the faulty engine four controller and determined the cause to be a faulty memory chip. The device is used only during the controller start-up sequence and has no impact on controller operations beyond that point. There is no indication of faulty memory chips on the other three engines, and therefore no related constraints to the wet dress rehearsal or launch.
Kennedy teams are completing remaining SLS pre-flight diagnostic tests and hardware closeouts, including testing the flight termination system on the SLS and installing instrumentation on the twin solid rocket boosters, in advance of rolling the rocket and spacecraft to Launch Pad 39B for the first time next month for a final test before launch. This final test, known as the wet dress rehearsal, will run the launch team through operations to load propellant into the rocket’s tanks and conduct a full launch countdown.
During the test at the launch pad, engineers will be on duty in the Launch Control Center and in other stations where they will work during the Artemis I launch. They will capture as much data as possible on the performance of all the systems that are part of SLS and the Orion spacecraft as well as the Kennedy ground systems. NASA will set a target launch date after a successful wet dress rehearsal test.
Teams with NASA’s Exploration Ground Systems and contractor Jacobs lower the Space Launch System core stage – the largest part of the rocket – onto the mobile launcher, in between the twin solid rocket boosters, inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 12, 2021. Photo credit: NASA/Cory Huston
Work continues inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida in preparation for the Artemis I wet dress rehearsal test, currently targeted for next month. Teams have been installing the flight termination system on the rocket and working on the first of a two-part test of the system. For safety, all rockets are required to have a flight termination system that the Space Launch Delta 45 can use to terminate the flight if necessary. Once the rocket and spacecraft systems are verified during wet dress rehearsal testing, the 322-foot-tall rocket will roll back into the VAB for final inspections and checkouts, including the second part of the flight termination system test, ahead of returning to the pad for launch.
In addition to work on the flight termination system, the team is installing instrumentation on the twin solid rocket boosters and core stage, as well as instrumentation needed for the wet dress rehearsal rollout. Artemis I is a flight test, and engineers will capture as much data as possible on the performance of all the systems that are part of the Space Launch System (SLS) rocket and the Orion spacecraft as well as the Kennedy ground systems that support the vehicle during rollout, wet dress rehearsal, and launch. Not only will this be the first integrated flight for SLS and Orion, but it will be the first use of many new ground systems. Thousands of sensors and special instruments will monitor the rocket and spacecraft as they make the four-mile journey to Launch Complex 39B next month. The team is also working to inspect and install thermal blankets on the core stage engine section.
Up next, the team plans to power up the Orion spacecraft as part of testing the flight termination system and then close the spacecraft’s hatch after powering it down.
This week, engineers and technicians successfully completed an engineering test series of the Space Launch System (SLS) rocket core stage inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as part of the integrated testing before launch.
After replacing and testing one of four RS-25 engine controllers, the team conducted several tests to ensure the massive core stage is ready to roll to the launch pad for the wet dress rehearsal ahead of the Artemis I launch. Engineers and technicians tested communication between the flight computers and other core stage systems and slightly moved the engines to practice the gimbaling they will experience during flight.
All four engine controllers were powered up and performed as expected as part of the Artemis I Core Stage engineering tests. Following the power up, engineers successfully performed diagnostic tests on each controller.
Up next, the team will conduct a second countdown sequencing test to demonstrate the ground launch software and ground launch sequencer, which checks for health and status of the vehicle while at the pad. The simulated launch countdown tests the responses from SLS and the Orion spacecraft, ensuring the sequencer can run without any issues. After the countdown test and final closeouts are complete, SLS and Orion will head to the launch pad for the first time to complete the wet dress rehearsal test.
Final stacking operations for NASA’s mega-Moon rocket are underway inside the Vehicle Assembly Building at NASA’s Kennedy Space Center as the Orion spacecraft is lifted onto the Space Launch System (SLS) rocket for the Artemis I mission. Engineers and technicians with Exploration Ground Systems (EGS) and Jacobs attached the spacecraft to one of the five overhead cranes inside the building and began lifting it a little after midnight EDT.
Next, teams will slowly lower it onto the fully stacked SLS rocket and connect it to the Orion Stage Adapter. This will require the EGS team to align the spacecraft perfectly with the adapter before gently attaching the two together. This operation will take several hours to make sure Orion is securely in place.
NASA will provide an update once stacking for the Artemis I mission is complete.