Artemis I Integrated Testing Update

NASA’s Space Launch System (SLS) rocket and Orion spacecraft are undergoing integrated testing inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida to ensure they are “go” for launch of the Artemis I mission early next year.

After stacking the Orion atop the SLS rocket, the engineers completed several tests to ensure the rocket and spacecraft are ready to roll to the launch pad ahead of the Artemis I wet dress rehearsal. These tests included ensuring Orion, the core stage, and boosters can communicate with the ground systems and verification testing to make sure all the pieces of the rocket and spacecraft can power up and connect to the consoles in the Launch control Center.

During a recent core stage power test, engineers identified an issue with one of the RS-25 engine flight controllers. The flight controller works as the “brain” for each RS-25 engine, communicating with the SLS rocket to provide precision control of the engine as well as internal health diagnostics. Each controller is equipped with two channels so that there is a back-up, should an issue arise with one of the channels during launch or ascent. In the recent testing, channel B of the controller on engine four failed to power up consistently.

The controller had powered up and communicated successfully with the rocket’s computers during preliminary integrated testing, in addition to performing a full duration hot fire during Green Run testing with all four RS-25 engines earlier this year at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NASA and lead contractor for the RS-25 engines, Aerojet Rocketdyne, also test all RS-25 engines and flight controllers for Artemis missions at Stennis prior to integration with the rocket.

After performing a series of inspections and troubleshooting, engineers determined the best course of action is to replace the engine controller, returning the rocket to full functionality and redundancy while continuing to investigate and identify a root cause. NASA is developing a plan and updated schedule to replace the engine controller while continuing integrated testing and reviewing launch opportunities in March and April.

Verification testing of the Interim Cryogenic Propulsions Stage is ongoing along with closeouts of the boosters, and parallel work continues with core stage engineering testing. Communication end-to-end testing is underway, and countdown sequence testing will begin as early as next week to demonstrate all SLS and Orion communication systems with the ground infrastructure and launch control center. Integrated testing will culminate with the wet dress rehearsal at historic Launch Complex 39B. NASA will set a target launch date after a successful wet dress rehearsal test.

SLS will be the most powerful rocket in the world and is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. With the Artemis missions, NASA will land the first woman and the first person of color on the Moon and establish long-term exploration in preparation for missions to Mars. SLS and Orion, along with the commercial human landing system and the Gateway that will orbit the Moon, are NASA’s backbone for deep space exploration.

 

Artemis II Rocket Hardware Ready for Final Outfitting

Materials scientists finished applying the thermal protection system to NASA’s Space Launch System (SLS) launch vehicle stage adapter and moved it to another manufacturing area to finish outfitting the flight hardware for the Artemis II mission.

Artemis II launch vehicle stage adapter
Technicians at NASA’s Marshall Space Flight Center in Huntsville, Alabama moved the Artemis II launch vehicle stage adapter to another manufacturing area to finish outfitting the flight hardware on Dec. 8, 2021.

On Dec. 8, 2021, a NASA transporter moved the adapter which was built at NASA’s Marshall Space Flight Center by lead contractor Teledyne Brown Engineering in Huntsville, Alabama. Teams recently completed applying the spray-on foam insulation that will protect the rocket hardware during flight. Now, crews will outfit the inside of the adapter with platforms that will allow teams to access the inside during assembly with the rest of the rocket. Technicians will also install special systems that allow the adapter and the core stage to separate from the Interim Cryogenic Propulsion Stage, or ICPS. The adapter connects the rocket’s core stage to the ICPS, which provides the power to perform the trans-lunar injection maneuver to send the Orion spacecraft to the Moon. This adapter is for the Artemis II mission that will be the first to return American astronauts to lunar orbit.

launch vehicle stage adapter
Prior to the launch vehicle stage adapter being moved on Dec. 8, 2021, teams recently completed applying the spray-on foam insulation that will protect the rocket hardware during flight.

SLS Booster Fired up to Test Improved Design for Future Artemis Missions

A team of NASA and Northrop Grumman engineers fired a 2-foot-diameter, subscale solid rocket booster on Dec. 2, 2021, at NASA’s Marshall Space Flight Center in Huntsville, Alabama. This test, conducted in Marshall’s East Test Area, was the second of three tests supporting the Booster Obsolescence and Life Extension (BOLE) program, which will have an upgraded design to power the evolved configuration of the Space Launch System (SLS) rocket on flights after Artemis VIII.

24-inch diameter subscale solid rocket test
NASA engineers successfully completed a 24-inch diameter subscale solid rocket test on Dec. 2, 2021, at NASA’s Marshall Space Flight Center in Huntsville, Alabama, in the East Test Area. The sub-scale motor produced 76,400 pounds of thrust during the hot fire test. This test was the first of two tests supporting the Booster Obsolescence and Life Extension (BOLE) development effort that includes a new motor design for upcoming Artemis missions after Artemis VIII. This 334-inch motor was the longest subscale motor tested to date.

The BOLE booster will be a larger and more powerful solid rocket motor than the current SLS solid rocket booster. The boosters for the first eight flights of the Artemis program repurpose the steel booster cases and parts from the Space Shuttle Program with an upgraded design. The BOLE booster will implement a composite case design, replace obsolete parts with newer components, and improve the booster’s design and performance.

This test focused on the booster motors, which provide the majority of the power to launch SLS. Unlike previous subscale motor tests, this marked the first time the team could evaluate insulation and nozzle on one motor rather than two configurations, one for the nozzle and one for the insulation. During this subscale test, the motor produced 76,400 pounds of thrust.

The original test design had two segments, each 9 feet long. To get a more characteristic thrust profile, a 4.5-foot-long segment was added to the test article, totaling nearly 28 feet and making this the longest subscale motor tested to date. In addition to the added half segment, a new propellant, aft dome design, and nozzle design are included in the BOLE motor development program that will become part of the Block 2 evolved rocket.

During the test, three different internal case insulation formulations were evaluated in the aft dome. The performance results of these materials will aid in selecting a final formulation for the first full-scale test fire of the BOLE booster. As the team completes the final design for the full-scale motor, this test is an important step in learning how materials will perform at the higher pressure and performance expected for the BOLE motor as compared to current motors.

The third test of the subscale motor is currently scheduled for spring 2022 at Marshall, followed by the first full-scale BOLE motor test, tentatively scheduled for spring 2024 at Northrop Grumman’s test facility in Utah. Northrop Grumman, lead contractor for the booster, helped conduct the Marshall test and will be assisting with data evaluation.

Final Piece of Rocket Hardware Added to Artemis I Stack

Final OSA stacked on top of the ICPS
After successfully completing the integrated modal test, technicians removed the Space Launch System (SLS) rocket’s Orion stage adapter structural test article and the Mass simulator for Orion. Then, they moved the Orion stage adapter flight hardware to the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. On Oct. 9, the Orion stage adapter was connected to the top of the Interim Cryogenic Propulsion Stage (ICPS) that provides the power to send Orion to the Moon. Soon, Orion, which rides on top of SLS, will be stacked to complete the Artemis I spaceship. Artemis I is the first integrated flight of SLS and Orion. This uncrewed flight test will be followed by Artemis II, which will be the first mission to send astronauts on a mission to orbit the Moon.

Leerlo en español aquí.

The last piece of Space Launch System (SLS) rocket hardware has been added to the stack at NASA’s Kennedy Space Center in Florida. Crews with NASA’s Exploration Ground Systems and contractor Jacobs added the Orion stage adapter to the top of the rocket inside the spaceport’s Vehicle Assembly Building. To complete the Artemis I stack, crews will soon add the Orion spacecraft and its launch abort system on top of Orion stage adapter.

The Orion stage adapter, built at NASA’s Marshall Space Flight Center in Huntsville, Alabama connects Orion to the Interim Cryogenic Propulsion Stage (ICPS), which was built by Boeing and United Launch Alliance at ULA’s factory in Decatur, Alabama. During the mission, the ICPS will fire one RL10 engine in a maneuver called trans-lunar injection, or TLI, to send Orion speeding toward the Moon.

As Orion heads to the Moon for its mission, the ICPS will separate from Orion and then deploy 10 secondary payloads that are riding to space inside the Orion stage adapter. These CubeSats have their own propulsion systems that will take them on missions to the Moon and other destinations in deep space.

While the ICPS and Orion stage adapter are making it possible for SLS to send its first science payloads to space on this uncrewed mission, they only will be used for the first three Artemis missions. The Exploration Upper Stage (EUS), a more powerful stage with four RL10 engines, will be used on future Artemis missions. The EUS can send 83,000 pounds to the Moon, which is 40 percent more weight than the ICPS. The EUS makes it possible to send Orion, astronauts, and larger and heavier co-manifested payloads to the Moon.

Artemis I will be followed by a series of increasingly complex missions. With Artemis, NASA will land the first woman and the first person of color on the lunar surface and establish long-term exploration at the Moon in preparation for human missions to Mars. SLS and NASA’s Orion spacecraft, along with the commercial human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

All Artemis I Secondary Payloads Installed in Rocket’s Orion Stage Adapter

Technicians have loaded the last of 10 CubeSats into the Space Launch System (SLS) rocket’s five-foot-tall Orion stage adapter at NASA’s Kennedy Space Center in Florida. After the Orion spacecraft separates from the SLS rocket for a precise trajectory toward the Moon, the shoebox-sized payloads are released from the Orion stage adapter to conduct their own science and technology missions.

SLS’s main goal for the Artemis I mission is to successfully send the uncrewed Orion spacecraft to lunar orbit where it can test out critical spacecraft systems and then return to Earth testing the spacecraft’s heat shield at lunar reentry speeds. The Orion stage adapter connects the rocket to Orion and contains room inside the adapter to provide a rare opportunity to send the CubeSats to deep space using extra lift-capacity on the uncrewed mission. The CubeSats will study everything from the Moon to asteroids to the deep space radiation environment. Each CubeSat provides its own propulsion and navigation to get to various deep space destinations.

Nine of the ten CubeSats were loaded into the adapter earlier this summer. The last CubeSat to be placed aboard was BioSentinel, the sole CubeSat among this group of satellite payloads that contains a living microorganism, and which was refrigerated until loading in order to preserve its biological contents as long as possible for the mission. BioSentinel’s primary objective is to detect and measure the effect of space radiation on living organisms – in this case, yeast – over long durations beyond low-Earth orbit. A similar experiment is being carried out on the International Space Station so that research teams can compare radiation effects experienced on the station about 250 miles above Earth to those encountered in deep space near the Moon, more than 240,000 miles away.

BIOSENTINEL installed in OSA and other CubeSats in OSA
The Jacobs team at NASA’s Kennedy Space Center in Florida installing the last of 10 CubeSats in the Space Launch System (SLS) rocket’s Orion stage adapter. Biosentinel, the final CubeSat to be loaded, will study how radiation affects living organisms in deep space. Biosentinel joins nine other CubeSats that will be studying a variety of destinations, including the Moon, and scientific areas important to deep space exploration.

Developed by NASA’s Ames Research Center in California’s Silicon Valley and the agency’s Johnson Space Center in Houston, Loma Linda University Medical Center, and the University of Saskatchewan, It is among the first studies of the biological response to space radiation outside low-Earth orbit in nearly 50 years. Human cells and yeast cells have many similar biological mechanisms, including DNA damage and repair, and BioSentinel’s experiments can help us better understand the radiation risks for long-duration deep space human exploration.

OSA with all the CubeSats installed.
All 10 secondary payloads have been installed in the Space Launch System (SLS) rocket’s Orion stage adapter. The SLS rocket had extra capacity to give the “hitchhiking” CubeSats a free ride on the Artemis I mission. The mission’s primary goal is a flight test of the integrated SLS and Orion system. The Orion stage adapter connects the SLS rocket to Orion and had slots built into it for the payloads. The CubeSats provide their own deployment and propulsion systems that will take them to specific destinations including the Moon and an asteroid.

Progress continues to complete stacking for the Artemis I mission and check out the integrated hardware operations. The team recently successfully completed two complex tests: the Umbilical Retract and Release Test and the Integrated Modal Test.  Next, the Artemis I Orion stage adapter with the secondary payloads will be moved to the Vehicle Assembly Center at Kennedy Space Center in Florida and added to complete stacking of the rocket. Then, the Orion spacecraft will be stacked on top of the rocket to complete the Artemis I spaceship. Artemis I is the first in a series of increasingly complex missions to send astronauts to the Moon for long-term exploration that sets the stage for human missions to Mars.

Backbone of NASA’s Moon Rocket Joins Boosters for Artemis I Mission

Space Launch System core stage
Teams with NASA’s Exploration Ground Systems and contractor Jacobs lower the Space Launch System (SLS) core stage – the largest part of the rocket – onto the mobile launcher, in between the twin solid rocket boosters, inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on June 12, 2021. Photo credit: NASA/Cory Huston

Leerlo en español aquí

The core stage of the Space Launch System (SLS) rocket for NASA’s Artemis I mission has been placed on the mobile launcher in between the twin solid rocket boosters inside the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. The boosters attach at the engine and intertank sections of the core stage. Serving as the backbone of the rocket, the core stage supports the weight of the payload, upper stage, and crew vehicle, as well as carrying the thrust of its four engines and two five-segment solid rocket boosters.

After the core stage arrived on April 27, engineers with Exploration Ground Systems and contractor Jacobs brought the core stage into the VAB for processing work and then lifted it into place with one of the five overhead cranes in the facility.

Once the core stage is stacked alongside the boosters, the launch vehicle stage adapter, which connects the core stage to the interim cryogenic propulsion stage (ICPS), will be stacked atop the core stage and quickly followed by the ICPS.

Artemis I will be an uncrewed test of the Orion spacecraft and SLS rocket as an integrated system ahead of crewed flights to the Moon. Under the Artemis program, NASA aims to land the first woman and first person of color on the Moon in 2024 and establish sustainable lunar exploration by the end of the decade.

NASA Team Preparing Hardware for Future Moon Rockets

Technicians and engineers continue to make progress manufacturing core stages that will help power NASA’s Space Launch System (SLS) rocket for its second and third flights. NASA and Boeing, the lead contractor for the core stage, are in the process of conducting one of the biggest Artemis II milestones: assembling the top half of the core stage.

The 212-foot tall core stage for the SLS rocket is the largest rocket stage NASA has ever produced. The five individual elements that make up the core stage – the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section – are manufactured and assembled at NASA’s Michoud Assembly Facility in New Orleans. Together, the elements will supply propellant, vehicle control, and power to the four RS-25 engines at the bottom of the stage to produce more than 2 million pounds of thrust to send missions to the Moon.

The team manufactures every SLS core stage in Michoud’s 43-acre building which provides more than enough space for crews to work in tandem to build the core stages for Artemis II and Artemis III, the second and third flights of the SLS rocket and the first crewed missions of NASA’s Artemis program.

It takes teamwork to build a super heavy-lift rocket. Look behind the scenes at the work being done at NASA’s rocket factory:

The Artemis II Intertank is lifted into the Cell D of the VAB at NASA Michoud Assembly Facility on Friday, March 19, 2021.

Coming together to build the upper part of the rocket

After all the core stage’s large five structures are built and outfitted, these structures are connected during three major joining operations. For first one, the forward or upper parts of the core stage are joined together for the first time. First, teams move the intertank into an assembly area and connect it to the liquid oxygen tank, and then they add the forward skirt to form the entire upper part of the SLS core stage.

Crews with NASA and Boeing, the core stage prime contractor, recently moved the Artemis II intertank, above, to the assembly area where the three components will be stacked.

This image shows the forward skirt that will be used on the core stage of NASA’s Space Launch System rocket for Artemis II, the first crewed mission of NASA’s Artemis program, at NASA’s Michoud Assembly Facility. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The forward skirt houses flight computers, cameras, and avionics systems. The hardware is located at the top of the 212-foot-tall core stage and connects the upper part of the rocket to the core stage. Soon, technicians will ready the forward skirt for the first of three core stage assembly mates called the forward join. The forward join consists of three main parts -- the forward skirt, liquid oxygen tank, and intertank – to create the top, or forward part, of the core stage. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the human landing system, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket is capable of carrying astronauts in Orion around the Moon in a single mission. Image credit: NASA/Michael DeMocker

The Artemis II forward skirt, pictured above, has been outfitted and is ready for integration with the other large core stage structures. The forward skirt houses flight computers, cameras, and avionics systems. It is located at the very top of the core stage and connects to the upper part of the rocket.

This image highlights the liquid oxygen tank, which will be used on the core stage of NASA’ Space Launch System rocket for Artemis II, the first crewed mission of NASA’s Artemis program, at NASA’s Michoud Assembly Facility. The SLS core stage is made up of five unique elements: the forward skirt, liquid oxygen tank, intertank, liquid hydrogen tank, and the engine section. The forward skirt houses flight computers, cameras, and avionics systems. The liquid oxygen tank holds 196,000 gallons of liquid oxygen cooled to minus 297 degrees Fahrenheit. The LOX hardware sits between the core stage’s forward skirt and the intertank. Along with the liquid hydrogen tank, it will provide fuel to the four RS-25 engines at the bottom of the core stage to produce more than two million pounds of thrust to launch NASA’s Artemis missions to the Moon. Together with its four RS-25 engines, the rocket’s massive 212-foot-tall core stage — the largest stage NASA has ever built — and its twin solid rocket boosters will produce 8.8 million pounds of thrust to send NASA’s Orion spacecraft, astronauts and supplies beyond Earth’s orbit to the Moon and, ultimately, Mars. Offering more payload mass, volume capability and energy to speed missions through space, the SLS rocket, along with NASA’s Gateway in lunar orbit, the Human Landing System, and Orion spacecraft, is part of NASA’s backbone for deep space exploration and the Artemis lunar program. No other rocket can send astronauts in Orion around the Moon in a single mission. Image credit: NASA/Michael DeMocker

Moving through the manufacturing process

The core stage has two huge cryogenic liquid propellant tanks that collectively hold more than 733,000 gallons of liquid propellant to help launch the Space Launch System rocket to the Moon. Moving the immense hardware, especially the two propellant tanks, around the factory is a delicate process.

Teams carefully orchestrate every step of every lift and transport inside and outside the rocket factory. To safely and securely move hardware, they use special transporters and cranes that are designed to contain, hold, and handle the weight of each element. Above, teams move the more than 130-foot-tall liquid hydrogen tank to the same area as the liquid oxygen tank. Both propellant tanks will be used for Artemis II.

The aisles at Michoud are extra-wide to ensure large hardware can be transported throughout the factory. For the next phase of manufacturing, crews recently moved the boat-tail, a fairing-like cover that attaches to the engine section on the bottom of the core stage. The boat-tail is shown in the image foreground, and the engine section for Artemis II can be seen in the background covered with scaffolding. The four RS-25 engines for the SLS rocket will be mounted inside the engine section, and the boat-tail helps to protect and cover most of the four RS-25 engines’ critical systems.

Fusion Weld on H3 R2

It’s all in the details

As crews prepare the core stage elements that will be used for Artemis II for assembly and integration, the hardware for Artemis III is being welded in other areas of the factory. Engineers and technicians use friction-stir welding methods to connect the panels that make up each piece of hardware together and build larger structures. Fusion welding is traditional welding, and it uses heat to plug holes left by machines welding the larger pieces as well as for any necessary weld repairs.

Welding processes help to create the shells, or outside, of the core stage structures. Above, the engine section for Artemis III comes together in the Vertical Weld Center at Michoud. They are made by connecting panels such as the one in the front of this image. The engine section has been completed and moved to another part of the factory. One of the biggest tasks ahead, is outfitting it with a network of internal components and systems that connect to the RS-25 engines.

In May, the core stage team will begin work on the Artemis IV core stage, so three stages will be under construction at the same time. Because of the factory’s size, state-of-the-art equipment, and manufacturing processes, skilled workers can produce multiple rocket stages to power NASA’s next-generation Moon missions through the Artemis program.

NASA is working to land the first woman and the first person of color on the Moon. SLS and Orion, along with the human landing system and the Gateway in orbit around the Moon, are NASA’s backbone for deep space exploration. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission.

NASA Removes Rocket Core Stage for Artemis Moon Mission from Stennis Test Stand

Crews at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, worked April 19-20 to remove the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand in preparation for its transport to Kennedy Space Center in Florida. Operations required crews to lift the core stage from its vertical placement in the stand and lower it to a horizontal position on the B-2 Test Stand tarmac. The stage now will be loaded on NASA’s Pegasus barge for transport to Kennedy, where it will be prepared for launch of the Artemis I mission. Removal of the largest rocket stage ever built by NASA followed completion of a series of eight Green Run tests over the past year. During the Green Run series, teams performed a comprehensive test of the stand’s sophisticated and integrated systems. The series culminated in a hot fire of the stage’s four RS-25 engines on the B-2 stand March 18. During the hot fire, the four engines generated a combined 1.6 million pounds of thrust, just as during an actual launch. The test was the most powerful performed at Stennis in more than 40 years. NASA is building SLS, the world’s most powerful rocket, to return humans to deep space missions. As part of the backbone of NASA’s Artemis program, SLS will return humans, including the first woman and person of color, to the surface of the Moon to establish a sustainable presence and prepare for eventual missions to Mars.

Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA
Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA
Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA
Removal the first flight core stage of the agency’s Space Launch System rocket from the B-2 Test Stand
Credit: NASA

Artemis I Core Stage Being Readied for Shipment to Kennedy

The Space Launch System (SLS) core stage Green Run team has reviewed extensive data and completed inspections that show the rocket’s core stage and engines are in excellent condition after the full-duration Green Run hot fire test on Mar. 18.

This test at NASA’s Stennis Space Center near Bay St. Louis, Mississippi allowed the team to obtain data to meet all the hot fire test objectives. This second hot fire test with the core stage flight hardware that will launch the Artemis I mission to the Moon was described as “flawless” by the test team that included NASA and prime contractors Boeing and Aerojet Rocketdyne. The team encountered no issues during the test that started with powering up the core stage on Mar. 16.

While analyzing data, the team refurbished the core stage in preparations for shipping it this month to NASA’s Kennedy Space Center in Florida for the Artemis I launch. Refurbishment activities included drying the RS-25 engines and making expected repairs to the engines and the thermal protection system on the core stage.

This week, the team powered up the core stage and loaded the flight software that will be used for the Artemis I mission. Now, they are disconnecting systems that connect the stage to the B-2 Test Stand. Next, the stage will undergo final shipping preparations before it is lifted out of the stand and placed on the Pegasus barge.

Check back at this blog for updates as the Artemis I core stage prepares for its voyage to Kennedy.

Fueling Underway For Artemis I Launch

A view of the Interim Cryogenic Propulsion System in the Multi-Payload Processing Facility at NASA's Kennedy Space Center in Florida.
A view of the Interim Cryogenic Propulsion System in the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Feb. 18, 2021. Photo credit: NASA/Glenn Benson

Teams with NASA’s Kennedy Space Center Exploration Ground Systems and primary contractor, Jacobs, are fueling the Orion service module ahead of the Artemis I mission. The spacecraft currently resides in Kennedy’s Multi-Payload Processing Facility alongside the Interim Cryogenic Propulsion System (ICPS), the rocket’s upper stage that will send Orion to the Moon. After servicing, these elements will be integrated with the flight components of the Space Launch System, which are being assembled in the Vehicle Assembly Building.

Technicians began loading Orion’s service module with oxidizer, which will power the Orbital Maneuvering System main engine and auxiliary thrusters on the European-built service module ahead of propellant loading. These auxiliary thrusters stabilize and control the rotation of the spacecraft after it separates from the ICPS. Once the service module is loaded, teams will fuel the crew module to support thermal control of the internal avionics and the reaction control system. These 12 thrusters steady the crew module and control its rotation after separation from the service module.

Once Orion servicing is complete, teams will fill the ICPS. This liquid oxygen/liquid hydrogen-based system will push the spacecraft beyond the Moon for the test flight under the agency’s Artemis program. In several weeks, when fueling is complete, Orion will move to the center’s Launch Abort System Facility to integrate its launch abort system, and the ICPS will move to the Vehicle Assembly Building to be stacked atop the mobile launcher.