Building on Apollo 11 for the Next Giant Leap

This month, our nation will mark the 45th anniversary of the Apollo 11 landing on the moon – a remarkable American accomplishment and a “giant leap” for humankind.  Today, at NASA, we’re working on the next giant leap – a human mission to Mars, standing on the shoulders of astronauts Neil Armstrong, Buzz Aldrin and Michael Collins.

NextGiantLeap image

As I near the end of my fifth year as NASA administrator, I take great pride in the many amazing things our nation’s space program continues to accomplish.  From an incredible five Earth science missions heading to space this year, to the first flight test of the Orion spacecraft that will one day carry astronauts to Mars, and the continued success of our commercial partners in their missions to the International Space Station (ISS), we’re building on the Apollo program’s legacy to test and fly transformative, cutting-edge technologies today for tomorrow’s missions.

Around this 45th anniversary, we look ahead on our path to Mars and the milestones within our grasp.  We’re treading that path with a stepping stone approach that takes the extraordinary work our crews have been doing aboard the Space Station for more than 13 years preparing us to travel farther into our solar system.  Technology drives exploration, and we’ll be testing new technologies in the proving ground of deep space on our mission to an asteroid, eventually becoming Earth independent as we reach Mars.

Just this past week we were pleased that one of our private sector partners, Orbital Sciences, once again successfully launched a cargo mission to the ISS from U.S. soil.  Along with another commercial partner, SpaceX, they’ve demonstrated with their Cygnus and Dragon spacecraft, respectively, that American industry can help us reach low Earth orbit and create good jobs and value for NASA at the same time.  Later this year, we plan to award commercial contracts for transporting our astronauts to space from American soil by 2017, ending our reliance on others to get into space and freeing up scarce resources to focus on our even bolder Mars mission.

Our science missions also continue to turn science fiction into science fact.  Today in Washington, we are hosting a public event, “The Search for Life in the Universe,” about our work on one of the most fundamental questions in exploration, “Are we alone?”  Top scientists will share insights on how close we are to answering that question, what we know today from NASA missions and what we may find out soon.

In September, MAVEN arrives at Mars to study the planet’s upper atmosphere even as Curiosity and Opportunity continue to rove the surface and help prepare us for human missions to the Red Planet.  Next year New Horizons arrives at Pluto and the year after, Juno arrives at Jupiter, even as we prepare our next Great Observatory, the James Webb Space Telescope, for launch in 2018 to peer back at the oldest light in the cosmos.

You can see that today’s astronauts, scientists and engineers continue to be inspired by the Apollo 11 mission.  I’m proud and privileged to head a space agency that is accomplishing so much today with the legacy of the Apollo 11 crew and the thousands of ground support personnel who facilitated their success.  As the world’s leader in exploration, we have so much to look forward to in the coming years.

Here is a video I recorded about my personal remembrances of the first moon landing. I’m sure every one of you who was old enough also remembers exactly where you were at the time.

In the spirit of this brave crew, we look forward to a new generation of NASA achievements in space.

OCO-2 Launch: Another Asset in NASA’s Fleet to Observe and Protect Our Planet

Today, we launch the second of five incredible Earth Science missions this year. It’s the first time in a decade we’ve had so many Earth observatories headed to space in one year.

NASA Administrator Charles Bolden discusses Earth Science near the launch site for OCO-2. NASA photo by Bill Ingalls
NASA Administrator Charles Bolden discusses Earth Science near the launch site for OCO-2. NASA photo by Bill Ingalls

The Orbiting Carbon Observatory-2 (OCO-2) is the first NASA satellite dedicated to studying atmospheric carbon dioxide. OCO-2 data will help reduce uncertainties in forecasts of future carbon dioxide buildup in the atmosphere and help us make more accurate predictions of global climate change. With up to 100,000 measurements per day, the satellite will provide new insight into locations and behavior of both carbon dioxide sources and “sinks” where it is absorbed on regional scales.

OCO-2 joins Japan’s Greenhouse gases Observing SATellite (GOSAT), launched in 2009, to measure atmospheric carbon dioxide. The missions use different measurement approaches that together will help scientists better understand this important greenhouse gas and its impacts on our present and future climate.

Climate change is the challenge of our generation, and with OCO-2 and our existing fleet of orbiting satellites, NASA is uniquely qualified to take on the challenge of documenting and understanding these changes, predicting the ramifications, and sharing information about these changes for the benefit of society.

OCO-2 joins the “A-train” of satellites flying in formation that observe our planet globally on a daily basis. Our fleet of Earth-observing satellites, along with our airborne missions, ground observations, and researchers will help answer some of the critical challenges facing our planet today and in the future: climate change, sea level rise, freshwater resources, and extreme weather events.

Data and applications for societal benefit produced from NASA’s investment in Earth science research are directly accessible to decision-makers and stakeholders around the world anytime, anywhere. Our planet is changing, but NASA is on the job, helping us to understand and address the challenges we face and learn more about our planet each day.