NASA, Boeing to Provide Update on Boeing’s Orbital Flight Test-2

Boeing’s CST-100 Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket on Cape Canaveral Space Force Station in Florida.
Boeing’s CST-100 Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket on Cape Canaveral Space Force Station in Florida. Photo credit: Boeing

NASA and Boeing will hold a joint teleconference at 2:30 p.m. EDT Tuesday, Oct. 19, to update media on the company’s CST-100 Starliner spacecraft. Teams will discuss work on the oxidizer isolation valve issue that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

Participants in the briefing will be:

  • Steve Stich, manager of NASA’s Commercial Crew Program
  • John Vollmer, vice president and program manager, Boeing Commercial Crew Program
  • Michelle Parker, chief engineer, Boeing Space and Launch

Audio of the teleconference will stream live online at: https://www.nasa.gov/live.

To participate in the teleconference, media must contact ksc-newsroom@mail.nasa.gov by 1:30 p.m. Oct. 19 for the dial-in information.

The OFT-2 mission will launch Starliner on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the space station before returning to land in the western United States about a week later as part of an end-to-end test flight to prove the system is ready to fly crew.

Learn more about NASA’s Commercial Crew Program at: https://www.nasa.gov/commercialcrew.

 

NASA, Boeing Update Starliner Orbital Flight Test-2 Status

The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021.
The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021. Part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing

Editor’s note: This blog was updated Oct. 8 to reflect that the team is working toward launch opportunities in the first half of 2022 for Orbital Flight Test-2.

The NASA, Boeing team continues to make progress on the investigation of the oxidizer isolation valve issue on the Starliner service module propulsion system that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

“I am proud of the work our integrated teams are doing,” said Steve Stich, manager of the Commercial Crew Program at NASA’s Kennedy Space Center in Florida. “This is a complex issue involving hazardous commodities and intricate areas of the spacecraft that are not easily accessed. It has taken a methodical approach and sound engineering to effectively examine.”

Boeing has demonstrated success in valve functionality using localized heating and electrical charging techniques. Troubleshooting on the pad, at the launch complex, and inside the Starliner production factory at Kennedy Space Center has resulted in movement of all but one of the original stuck valves. That valve has not been moved intentionally to preserve forensics for direct root cause analysis.

Most items on the fault tree have been dispositioned by the team including causes related to avionics, flight software and wiring. Boeing has identified a most probable cause related to oxidizer and moisture interactions, and although some verification work remains underway, our confidence is high enough that we are commencing corrective and preventive actions. Additional spacecraft and component testing will be conducted in the coming weeks to further explore contributing factors and necessary system remediation before flight.

Boeing completed a partial disassembly of three of the affected Orbital Maneuvering and Attitude Control (OMAC) thruster valves last month and plans to remove three valves from the OFT-2 spacecraft in the coming weeks for further inspection. The team also is evaluating additional testing to repeat the initial valve failures.

Boeing has identified several paths forward depending on the outcome of the testing to ultimately resolve the issue and prevent it from happening on future flights. These options could range from minor refurbishment of the current service module components to using another service module already in production. Each option is dependent on data points the team expects to collect in the coming weeks including a timeline for safely proceeding back to the launch pad.

“Safety of the Starliner spacecraft, our employees, and our crew members is this team’s number one priority,” said John Vollmer, vice president and program manager, Boeing’s Starliner program. “We are taking the appropriate amount of time to work through the process now to set this system up for success on OFT-2 and all future Starliner missions.”

Potential launch windows for OFT-2 continue to be assessed by NASA, Boeing, United Launch Alliance, and the Eastern Range. The team currently is working toward opportunities in the first half of 2022 pending hardware readiness, the rocket manifest, and space station availability.

NASA, SpaceX Adjust Next Space Station Crew Rotation Launch Date

SpaceX Crew-3 astronauts (from left) Matthias Maurer, Thomas Marshburn, Raja Chari and Kayla Barron pose for a portrait during preflight training at SpaceX headquarters in Hawthorne, California.
SpaceX Crew-3 astronauts (from left) Matthias Maurer, Thomas Marshburn, Raja Chari and Kayla Barron pose for a portrait during preflight training at SpaceX headquarters in Hawthorne, California. Photo credit: SpaceX

NASA and SpaceX now are targeting 2:43 a.m. EDT Saturday, Oct. 30, for the agency’s Crew-3 launch to the International Space Station. The date adjustment provides two consecutive launch attempts for the crew rotation mission with the backup time and date of 2:21 a.m. Sunday, Oct. 31.

NASA astronauts Raja Chari, mission commander, Tom Marshburn, pilot, and Kayla Barron, mission specialist and ESA (European Space Agency) astronaut Matthias Maurer, also a mission specialist, will launch on the SpaceX Crew Dragon spacecraft and Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

Crew-3 astronauts are scheduled for a long-duration science mission aboard the orbiting laboratory, living and working as part of what is expected to be a seven-member crew.

Launch on Oct. 30 would have Crew-3 arriving at the space station early the next day after an approximate 22-hour journey for a short overlap with the astronauts who flew to the station as part of the agency’s SpaceX Crew-2 mission.

Return of Crew-2 with NASA astronauts Shane Kimbrough and Megan McArthur, Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide, and ESA astronaut Thomas Pesquet, is currently planned for early-to-mid November.

Missions teams continue to target April 15, 2022, for the launch of NASA’s SpaceX Crew-4 mission to the space station for a six-month science mission aboard the microgravity laboratory.

Crew-4 will be commanded by Kjell Lindgren with Bob Hines as pilot, both NASA astronauts. ESA astronaut Samantha Cristoforetti will be a mission specialist and command the station’s Expedition 68 crew, while the remaining crew member has yet to be named. Crew-3 astronauts are set to return to Earth in late April 2022 following a similar handover with Crew-4.

Starliner Returns to Factory, Preparations Underway to Resolve Valve Issue

OFT-2 Starliner spacecraft
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing

Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.

The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.

The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.

In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.

NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

Boeing's CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021.
Boeing’s CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021. Photo credit: Boeing

NASA and Boeing have decided to postpone the launch of Orbital Flight Test-2 to the International Space Station as teams continue work on the CST-100 Starliner propulsion system.

Engineering teams have been working to restore functionality to several valves in the Starliner propulsion system from inside United Launch Alliance’s Vertical Integration Facility that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

“We made a lot of progress to open the valves from inside the Vertical Integration Facility, and the NASA-Boeing teams did a great job doing everything we could to get ready for this launch opportunity,” said Kathryn Lueders, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “Although we wanted to see Starliner fly in this window, it’s critical that our primary focus is the safety of the crew transportation system – for the safety of the space station and the crew members that will be flying on these vehicles. We’ll only fly this test when we think we are ready, and can complete the mission objectives.”

Inside the VIF, Boeing was able to prompt nine of 13 valves open that previously were in the closed position using commanding, mechanical, electrical and thermal techniques. Teams will now begin the process to move Starliner back to Boeing’s Commercial Crew and Cargo Processing Facility in Florida for deeper-level troubleshooting of four propulsion system valves that remain closed and more detailed analysis on the spacecraft.

“Mission success in human spaceflight depends on thousands of factors coming together at the right time,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program. “We’ll continue to work the issue from the Starliner factory and have decided to stand down for this launch window to make way for other national priority missions.”

NASA, Boeing and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing Make Progress on Starliner Valve Issue

Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves.
Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves. Photo credit: Boeing

NASA and Boeing continued work over the weekend and Monday morning on the company’s CST-100 Starliner spacecraft service module propulsion system in preparation for the Orbital Flight Test-2 mission to the International Space Station.

Work progressed to restore functionality to several valves in the Starliner propulsion system that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

With the United Launch Alliance (ULA) Atlas V and Starliner in the Vertical Integration Facility (VIF) near Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida, engineering teams are able to power on Starliner allowing the vehicle to receive commands, and have direct access to the spacecraft for troubleshooting.

Inside the VIF, Boeing has been able to command seven of 13 valves open that previously were in the closed position. Test teams are applying mechanical, electrical and thermal techniques to prompt the valves to open, and are moving forward with a systematic plan to open the remainder of the affected valves, demonstrate repeatable system performance, and verify the root cause of the issue before returning Starliner to the launch pad for its Orbital Flight Test-2 mission.

Boeing also has completed physical inspections and chemical sampling on the exterior of a number of the affected valves, which indicated no signs of damage or external corrosion.

In the coming days, NASA and Boeing will continue work to bring all affected valves into the proper configuration. If all valve functionality can be restored and root cause identified, NASA will work with Boeing to determine a path to flight for the important uncrewed mission to the space station.

NASA, Boeing and ULA are assessing the potential for several launch opportunities with the earliest available in mid-August. Any launch date options would protect for the planetary window for the agency’s Lucy mission – the first-ever mission to explore Trojan asteroids.

Boeing Starliner Returned to Vertical Integration Facility for Testing

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen near the Vertical Integration Facility at Cape Canaveral Space Force Station in Florida. Photo by NASA/Joel Kowsky

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system during the countdown for its Aug. 3 launch attempt.

Now that the United Launch Alliance Atlas V rocket with the Starliner spacecraft on top has been returned to its Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Space Force Station, engineers will have direct access to Starliner with the assembly of support structures around the spacecraft’s service module for continued troubleshooting.

Boeing will power up Starliner, allowing the vehicle to receive commands providing the teams with real-time data.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved and the availability of the International Space Station and its crew to support the spacecraft’s arrival.

NASA’s Boeing OFT-2: Launch Scrubbed for Aug. 3. Attempt

The United Launch Alliance Atlas V rocket with Boeing's CST-100 Starliner atop is on the pad at Space Launch Complex-41 on Aug. 3, 2021.
The United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner atop is on the pad at Space Launch Complex-41 on Aug. 3, 2021. Photo credit: NASA

NASA, Boeing and United Launch Alliance (ULA) have scrubbed the Aug. 3 launch attempt of the agency’s Orbital Flight Test-2 to the International Space Station due to unexpected valve position indications in the Starliner propulsion system. ULA will begin removing propellant from the Atlas V rocket.

Pending resolution of the forward work, our next available launch opportunity would be 12:57 p.m. EDT on Wednesday, Aug. 4.

For more information on the technical issue, click here.

Follow along with launch activities and get more information about the mission at: https://blogs.nasa.gov/commercialcrew/.

Learn more about commercial crew and space station activities by following @Commercial_Crew@space_station, and @ISS_Research on Twitter as well as the Commercial Crew FacebookISS Facebook and ISS Instagram accounts

Orbital Flight Test-2 Starliner, Atlas V Roll Return to Launch Pad

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen as it is rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test-2 (OFT-2) mission, Thursday, July 29, 2021 at Cape Canaveral Space Force Station in Florida. Boeing’s Orbital Flight Test-2 will be Starliner’s second uncrewed flight test and will dock to the International Space Station as part of NASA's Commercial Crew Program.
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen as it is rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex 41 ahead of the Orbital Flight Test-2 (OFT-2) mission, Thursday, July 29, 2021 at Cape Canaveral Space Force Station in Florida. Boeing’s Orbital Flight Test-2 will be Starliner’s second uncrewed flight test and will dock to the International Space Station as part of NASA’s Commercial Crew Program. Photo credit: NASA/Aubrey Gemignani

This morning, Aug. 2, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance (ULA) Atlas V rocket rolled out of the ULA Vertical Integration Facility (VIF) to return to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida ahead of NASA’s Boeing Orbital Flight Test-2 mission to the International Space Station. Liftoff is scheduled for 1:20 p.m. EDT on Tuesday, Aug. 3.

Starliner and the Atlas V rocket made the first trip to the launch pad on July 29, but rolled back to the VIF on July 30 to avoid potential inclement weather.

For a launch Tuesday, meteorologists with the U.S. Space Force 45th Weather Squadron are predicting a 60% chance of favorable weather. The primary weather concerns for launch day are the cumulus cloud rule, lightning rule, and thick cloud rule violations during the instantaneous launch window.

NASA TV will cover the upcoming prelaunch, launch, and docking activities. Mission coverage is as follows (all times Eastern):

Tuesday, Aug. 3

12:30 p.m. – NASA TV launch coverage begins for a targeted 1:20 p.m. liftoff. NASA TV will have continuous coverage through Starliner orbital insertion.

3:30 p.m. (approximately) – Postlaunch news conference on NASA TV.

Wednesday, Aug. 4

10:30 a.m. – NASA TV rendezvous and docking coverage begins.

1:37 p.m. (scheduled) – Docking

Thursday, Aug. 5

8:30 a.m. – NASA TV hatch opening coverage begins

8:40 a.m. – Hatch opening

9:40 a.m. (approximately) – Welcoming remarks

Learn more about station activities by following @space_station and @ISS_Research on Twitter as well as the ISS Facebook and ISS Instagram accounts.

Orbital Flight Test-2 Starliner, Atlas V Roll Back to Vertical Integration Facility

On July 29, 2021, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Starliner will launch on the Atlas V for Boeing’s second uncrewed Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. OFT-2 is an important uncrewed mission designed to test the end-to-end capabilities of the new system for NASA’s Commercial Crew Program.
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Starliner will launch on the Atlas V for Boeing’s second uncrewed Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. OFT-2 is an important uncrewed mission designed to test the end-to-end capabilities of the new system for NASA’s Commercial Crew Program. Photo credit: United Launch Alliance

Boeing’s Starliner spacecraft on the United Launch Alliance (ULA) Atlas V rocket was rolled back from the launch pad at Cape Canaveral Space Force Station in Florida to ULA’s nearby Vertical Integration Facility on July 30 to avoid potential inclement weather in advance of Orbital Flight Test-2’s (OFT-2) launch to the International Space Station.

NASA and Boeing agreed to stand down from the July 30 attempt to allow the space station team time to continue working checkouts of the newly arrived Roscosmos’ Nauka module and to ensure the station will be ready for Starliner’s arrival. The earliest possible launch opportunity to the space station is no earlier than 1:20 p.m. EDT Tuesday, Aug. 3, from Space Launch Complex-41.

The U.S. Space Force 45th Weather Squadron predicts a 60% chance of favorable conditions for the Aug. 3 launch opportunity with the cumulous cloud rule, surface electric fields rule, and the lighting rule as the primary weather concerns.

The OFT-2 mission for NASA’s Commercial Crew Program will test the end-to-end capabilities of Starliner from launch to docking to a return to Earth in the desert of the western United States.

Learn more about NASA’s commercial crew program by following the commercial crew blog@commercial_crew and commercial crew on Facebook.

Learn more about station activities by following @space_station and @ISS_Research on Twitter as well as the ISS Facebook and ISS Instagram accounts