Boeing CST-100 Starliner Makes its Way to Space Launch Complex 41

Boeing’s CST-100 Starliner spacecraft passes by the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 21, on its way to Space Launch Complex 41 Vertical Integration Facility.Boeing’s CST-100 Starliner spacecraft passes by the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Thursday, Nov. 21, making its way to the Space Launch Complex 41 Vertical Integration Facility at Cape Canaveral Air Force Station. At the pad, Starliner will be secured atop a United Launch Alliance Atlas V rocket in preparation for Boeing’s uncrewed Orbital Flight Test to the International Space Station for NASA’s Commercial Crew Program.

Photo credit: NASA/Cory Huston

Boeing’s Starliner Spacecraft Preparing for Transport to Launch Site

The CST-100 Starliner spacecraft for Boeing's Orbital Flight Test is viewed Nov. 2, 2019 in the Commercial Crew and Cargo Processing Facility at Kennedy Space Center in Florida.
The CST-100 Starliner spacecraft to be flown on Boeing’s Orbital Flight Test (OFT) is viewed Nov. 2, 2019, while undergoing launch preparations inside the Commercial Crew and Cargo Processing Facility at Kennedy Space Center in Florida. During the OFT mission, the uncrewed Starliner spacecraft will fly to the International Space Station for NASA’s Commercial Crew Program. Photo credit: Boeing

NASA and Boeing are preparing for the next step in NASA’s Commercial Crew Program on Thursday, Nov. 21, as the CST-100 Starliner spacecraft begins its transport for integration on a United Launch Alliance (ULA) Atlas V rocket ahead of Boeing’s uncrewed Orbital Flight Test to the International Space Station.

During the operation, the fueled Starliner will be moved from Boeing’s Commercial Crew and Cargo Processing Facility at Kennedy to ULA’s Space Launch Complex 41 Vertical Integration Facility on Cape Canaveral Air Force Station. Later the same day, the spacecraft will be stacked on top of an Atlas V rocket for final processing ahead of the launch.

Boeing’s uncrewed flight test, which is targeted for Dec. 17, will provide valuable data on the end-to-end performance of the rocket, spacecraft and ground systems, as well as, in-orbit and landing operations. The data will be used toward certification of Boeing’s crew transportation system for carrying astronauts to and from the space station.

NASA’s Commercial Crew Program is working with the American aerospace industry through public-private partnerships to launch astronauts on American rockets and spacecraft from American soil for the first time since 2011. The goal of the program is safe, reliable and cost-effective human space transportation to and from the International Space Station. This could allow for additional research time aboard the station and increase the opportunity for discovery aboard humanity’s testbed for exploration, which includes sending astronauts to the Moon and Mars.

NASA, SpaceX Test Pad Emergency Egress System

NASA and SpaceX conduct a formal verification of the company's emergency escape system on Sept. 18, 2019 at Launch Complex 39A.
NASA astronauts Shannon Walker, in front, and Bob Behnken participated in the exercise to verify the crew can safely and quickly evacuate from the launch pad in the unlikely event of an emergency before liftoff of SpaceX’s first crewed flight test, called Demo-2. During the escape verification, Walker and Behnken pass through the water deluge system on the 265-foot level of the crew access tower. Photo credit: SpaceX

NASA and SpaceX conducted a formal verification of the company’s emergency escape, or egress, system at Kennedy Space Center’s Launch Complex 39A in Florida on Sept. 18, 2019. NASA astronauts Bob Behnken and Shannon Walker participated in the exercise to verify the crew can safely and swiftly evacuate from the launch pad in the unlikely event of an emergency before liftoff of SpaceX’s first crewed flight test, called Demo-2.

At tower level on the pad, Walker and Behnken practiced loading into a slidewire basket and simulating an emergency escape to ground level.
At tower level on the pad, Walker and Behnken practiced loading into a slidewire basket and simulating an emergency escape to ground level. Photo credit: SpaceX

“This demonstration allowed all the various teams responsible for ground operations, system design, ground safety and emergency management to observe and verify the system is ready for operational use,” said Steve Payne, launch operations integrator for the agency’s Commercial Crew Program. “It’s a system we hope we never have to use, but we have to be prepared for every scenario.”

During the exercise, Behnken and Walker demonstrated two escape methods to show the crew could leave the 265-foot-level of the launch tower quickly. One method was an expedited non-emergency egress, where the crew started at the end of the crew access arm, called the white room, as if they just exited the capsule, and descended the crew access tower by taking the elevator to the base of the launch pad. Then, they were picked up by the pad team to be returned to crew quarters.

The other method involved an emergency egress, where the crew and pad team started at the crew access arm and escape to the ground using the slidewire baskets, with all alarms and fire suppression systems activated. From there, they boarded an armored vehicle that took them to safety.

“Safety of crew members is the top priority,” Walker said. “This was a great opportunity to test the emergency egress system and procedures on the pad.”

SpaceX provided a demonstration of activating alarms and beacons, putting on emergency breathing air bottles and activating the water deluge system on the crew access level, followed by egress from the white room. The astronauts also practiced loading into the baskets. The release mechanisms were also tested, and a weighted empty basket was sent down the length of the slidewire cable to the landing area.

The slidewire baskets have had a number of design improvements since they were used during the shuttle era. A new braking system was added that regulates the speed as astronauts descend the slidewire, which makes for a smoother ride for the crew.  Adjustments to the system have also made dismounting the slidewire baskets much easier than with the previous design.

Also, the platform used for emergency escape on the tower was relocated and reinstalled to the 265-foot-level, up 70 feet from its original shuttle-era location, in order to accommodate a taller launch vehicle.

“If the emergency egress system were ever to be needed to escape from a hazardous event, we want to have complete confidence that it will operate as designed and get our flight crew and pad personnel off the tower quickly and safely,” Payne said.

The verification team also included personnel from the Astronaut Office at NASA’s Johnson Space Center in Houston, NASA Flight Surgeons, SpaceX systems engineers, Kennedy Aero Medical, Commercial Crew Program Safety, and other observers.

“Each time today when we headed down the crew access arm, I couldn’t help but think about what it will be like to strap into Dragon on launch day,” Behnken said. “It’s exciting to have this verification test behind us on our way to the SpaceX Demo-2 mission.”

As commercial crew providers SpaceX and Boeing begin to make regular flights to the space station, NASA will continue to advance its mission to go beyond low-Earth orbit and establish a human presence on the Moon with the ultimate goal of sending astronauts to Mars.

The Atlas V to Launch Starliner Crew Missions to Station Arrives at Launch Site

The ULA Atlas V booster for Boeing's Crew Flight Test is backed into the Atlas Spaceflight Operations Center at CCAFS on June 5. 2019.
The United Launch Alliance (ULA) Atlas V booster that will be used for Boeing’s Crew Flight Test (CFT) is backed into the Atlas Spaceflight Operations Center (ASOC) at Cape Canaveral Air Force Station in Florida on June 5, 2019. The ULA Atlas V rocket will launch Starliner and its crew to the International Space Station for NASA’s Commercial Crew Program. Inside the ASOC, the booster will await the start of operations for its missions. The CFT will demonstrate Starliner and Atlas V’s ability to safely carry crew to and from the orbiting laboratory. Photo credit: NASA/Frank Michaux
The United Launch Alliance (ULA) Atlas V booster that will be used for Boeing’s Crew Flight Test (CFT) is moved out of the Mariner cargo ship at the Army Wharf at Cape Canaveral Air Force Station in Florida on June 5, 2019.
The United Launch Alliance (ULA) Atlas V booster that will be used for Boeing’s Crew Flight Test (CFT) is moved out of the Mariner cargo ship at the Army Wharf at Cape Canaveral Air Force Station in Florida on June 5, 2019. Photo Credit: NASA/Frank Michaux

The United Launch Alliance (ULA) Atlas V rocket that will launch Boeing’s CST-100 Starliner spacecraft on its Crew Flight Test (CFT) to the International Space Station for NASA’s Commercial Crew Program arrived on Saturday at Cape Canaveral Force Station in Florida.

The booster stage and the Dual Engine Centaur upper stage of the Atlas V rocket, designated AV-082, arrived on ULA’s Mariner cargo ship from the company’s facility in Decatur, Alabama.

The Atlas V rocket now located in the company’s Atlas Spaceflight Operations Center at Cape Canaveral will undergo receiving checks and await the start of operations for its mission. The CFT mission will take NASA astronauts Mike Fincke and Nicole Mann, and Boeing astronaut Chris Ferguson to the station to demonstrate Starliner and Atlas V’s ability to safely carry crew to and from the orbiting laboratory.

The United Launch Alliance (ULA) Atlas V booster that will be used for Boeing’s Crew Flight Test (CFT) is transported to the Atlas Spaceflight Operations Center (ASOC) at Cape Canaveral Air Force Station in Florida on June 5, 2019.
The United Launch Alliance (ULA) Atlas V booster that will be used for Boeing’s Crew Flight Test (CFT) is transported to the Atlas Spaceflight Operations Center (ASOC) at Cape Canaveral Air Force Station in Florida on June 5, 2019. Photo credit: NASA/Frank Michaux

CFT will be the second Starliner flight following the uncrewed Orbital Flight Test (OFT) that is targeted to launch to the station in August. The rocket for OFT, called AV-080, was brought to the Cape last year.

Both flights are key elements of NASA’s Commercial Crew Program that will return the nation’s capability to launch astronauts into orbit on American rockets and spacecraft from U.S. soil. Regular commercial transportation using Boeing’s Starliner and SpaceX’s Crew Dragon spacecraft to and from the space station will enable the addition of another crew member, expanded station use, and additional research time aboard the orbiting laboratory. This time will help address the challenges of moving humanity toward the Moon and Mars as we learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for human and robotic exploration beyond low-Earth orbit, to the Moon and Mars.

NASA’s Commercial Crew, DoD Teams Conduct Crew Rescue Exercise

Rescue team members stand on the stabilization collar attached to the Boeing CST-100 Starliner training capsule, known as Boiler Plate 3, during a search and rescue training exercise April 16, 2019.
Rescue team members stand on the stabilization collar attached to the Boeing CST-100 Starliner training capsule, known as Boiler Plate 3, during a search and rescue training exercise April 16, 2019. The exercise will be conducted over the next several days at the Army Wharf at Cape Canaveral Air Force Station and in the Atlantic Ocean. Photo credit: NASA/Kim Shiflett

NASA and the Department of Defense Human Space Flight Support (HSFS) Office Rescue Division are conducting a search and rescue training exercise over the next several days at the Army Warf on Cape Canaveral Air Force Station and in the Atlantic Ocean. This is the first at-sea exercise with the Boeing CST-100 Starliner training capsule, known as Boiler Plate 3, ahead of the commercial crew flight test with astronauts targeted for later this year.

The HSFS teams have supported all NASA human spaceflight programs and will be on standby for both NASA’s Commercial Crew Program and Orion launches and landings. The team is responsible for quickly and safely rescuing astronauts in the unlikely event of an emergency during ascent, free flight or landing. This multi-day exercise consists of ground- and water- based training to prepare the DoD pararescue team for an emergency situation on ascent. The HSFS teams will rehearse locating the Starliner spacecraft, sending out rescue teams to extract DoD team members, acting as astronauts, from the capsule and providing immediate medical treatment.  The HSFS team will arrange for pickup, transport and follow-on medical care.

At the conclusion of this exercise, HSFS will complete a full mission profile to validate best practices for configuring and air-dropping U.S. Air Force Pararescue team members from a C-17 aircraft with their associated watercraft, specialized rescue equipment and advanced medical capabilities. HSFS conducted a similar exercise with SpaceX’s Crew Dragon spacecraft in early December 2018.

This simulation is another example of how safety is being built into systems, processes and procedures for commercial crew missions. It is standard practice to conduct these exercises, and was regularly done during the Space Shuttle Program.

During normal return scenarios, Boeing’s Starliner will land on land in a safe zone of about 15 square miles in the Western United States. Throughout the commercial crew development phases with NASA, Boeing has performed dozens of qualification tests on its parachute and airbag systems simulating conditions on land and in the water.

NASA Announces Updated Crew Assignment for Boeing Flight Test

Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, performs one of multiple tests of the Capillary Flow Experiment investigation in the Destiny laboratory of the International Space Station in September 2004.
Astronaut Edward M. (Mike) Fincke, Expedition 9 NASA ISS science officer and flight engineer, performs one of multiple tests of the Capillary Flow Experiment investigation in the Destiny laboratory of the International Space Station in September 2004. Photo credit: NASA

NASA astronaut E. Michael “Mike” Fincke has been added to the crew of the Boeing CST-100 Starliner’s Crew Flight Test, scheduled to launch later this year.

Fincke takes the place of astronaut Eric Boe, originally assigned to the mission in August 2018. Boe is unable to fly due to medical reasons; he will replace Fincke as the assistant to the chief for commercial crew in the astronaut office at NASA’s Johnson Space Center.

Fincke will begin training immediately alongside NASA’s Nicole Mann and Boeing’s Chris Ferguson, who were both assigned to the mission in August 2018.

The Starliner’s Crew Flight Test will be the first time that the new spacecraft, which is being developed and built by Boeing as part of NASA’s Commercial Crew Program, is launched into space with humans on board.

For more information: https://go.nasa.gov/2UaSBOV.

NASA, Boeing May Evolve Flight Test Strategy

An artist image of the Boeing Starliner spacecraft docking to the International Space Station.
An artist image of the Boeing Starliner spacecraft docking to the International Space Station. Image credit: Boeing

NASA updated its Commercial Crew Transportation Capabilities (CCtCap) contract with Boeing, which provides flexibility in its commercial flight tests to the International Space Station. Boeing, one of the agency’s two commercial crew partners, approached NASA last year and proposed adding a third crew member on its Crew Flight Test (CFT) to the International Space Station. Adding a third crew member on Boeing’s flight test could offer NASA additional flexibility to ensure continued U.S. access to the orbital laboratory. The modification also identifies cargo capabilities for the company’s uncrewed and crewed test flights. Exact details of how to best take advantage of the contract modification are under evaluation, but the changes could allow for additional microgravity research, maintenance, and other activities while Starliner is docked to station.

For more details, visit https://go.nasa.gov/2GVbxy6.