NASA and Boeing Discuss Preliminary Pad Abort Test Results

On Thursday, Nov. 7, Boeing Commercial Crew Vice President and Program Manager John Mulholland and NASA Commercial Crew Program Manager Kathy Lueders addressed preliminary results of the Nov. 4 CST-100 Starliner Pad Abort Test during a media teleconference.

Preliminary results indicate that the test, conducted from Launch Complex 32 at the U.S. Army’s White Sands Missile Range in New Mexico, met NASA’s primary test objectives:

  • Validated the launch abort system’s capability to perform a safe abort
  • Safely separated CST-100 from a static launch vehicle adapter on the launch pad
  • Validated the launch abort system’s capability to propel Starliner safely to a target point to avoid re-contact with any potential debris or other pieces of hardware
  • Demonstrated stability and control characteristics of the launch abort system
  • Safely separated the crew module from the service module during the abort sequence
  • Deployed landing and recovery system to execute a controlled land landing
  • Validated functionality of guidance, navigation & control and command & data handling system for appropriate sequencing of commands to the propulsion controllers

During the test, two of three of Starliner’s main parachutes deployed and eased Starliner to the ground. Although designed with three parachutes, two opening successfully is acceptable for the test parameters and crew safety. Boeing has determined that the parachute anomaly occurred because the rigging between one of the three pilot and main parachutes was improperly connected. Boeing has verified this through closeout photos, and understands how this happened on a test vehicle. The company is validating that its processes were followed correctly on its Orbital Flight Test vehicle, which is targeted to launch from Cape Canaveral Air Force Station in Florida on Dec. 17.

NASA is encouraged by the preliminary results of the Pad Abort Test and remains committed to working in concert with Boeing to ensure crew safety as we move to return astronauts to the International Space Station from U.S. soil.

Boeing’s Starliner Pad Abort Test Complete

Boeing’s CST-100 Starliner’s airbags inflate in preparation for landing in the New Mexico desert in the company’s Pad Abort Test for NASA’s Commercial Crew Program. Image credit: NASA TV
Boeing’s CST-100 Starliner’s four launch abort engines and several orbital maneuvering and attitude control thrusters ignite in the company’s Pad Abort Test, pushing the spacecraft away from the test stand with a combined 160,000 pounds of thrust, from Launch Complex 32 on White Sands Missile Range in New Mexico.
Boeing’s CST-100 Starliner’s four launch abort engines and several orbital maneuvering and attitude control thrusters ignite in the company’s Pad Abort Test.

Boeing’s CST-100 Starliner Pad Abort Test is complete. The test began at 9:15 a.m. EST (7:15 a.m. MST) with ignition of the vehicle’s launch abort engines and orbital maneuvering and attitude control system, concluding a short time later with touchdown on a cushion of airbags.

The test was designed to verify that each of Starliner’s systems will function not only separately, but in concert, to protect astronauts by carrying them safely away from the launch pad in the unlikely event of an emergency prior to liftoff. During the test, Starliner’s four launch abort engines and several orbital maneuvering and altitude control thrusters fired to push the spacecraft approximately 1 mile above land and 1 mile north of the test stand.

Boeing’s CST-100 Starliner lands in the New Mexico desert in the company’s Pad Abort Test for NASA’s Commercial Crew Program.
Boeing’s CST-100 Starliner lands in the New Mexico desert in the company’s Pad Abort Test for NASA’s Commercial Crew Program. Image credit: NASA TV

Boeing’s next mission, called Orbital Flight Test, will launch an uncrewed Starliner spacecraft to the station on a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station’s Space Launch Complex 41. Launch is targeted for Dec. 17.

For more information, read the news release at https://go.nasa.gov/2PKrTxB.

New T-0 for Pad Abort Test: 9:15 a.m. EST, 7:15 a.m. MST

Teams at Launch Complex 32 at White Sands Missile Range in New Mexico have adjusted the Pad Abort Test time to 9:15 a.m. EST (7:15 a.m. MST).

The Pad Abort Test is Boeing’s first test flight for NASA’s Commercial Crew Program, a public-private partnership with the American aerospace industry to launch astronauts to the International Space Station on American rockets and spacecraft from American soil for the first time since 2011.

The test is designed to verify that each of Starliner’s systems will function not only separately, but in concert, to protect astronauts by carrying them safely away from the launch pad in the unlikely event of an emergency prior to liftoff.

Boeing Pad Abort Test to air live on NASA TV

Tune in to NASA TV and the agency’s website at 8:50 a.m. EST today to follow live coverage of Boeing’s CST-100 Starliner Pad Abort Test from Launch Complex 32 at White Sands Missile Range in New Mexico. The test is scheduled for 9 a.m. EST with a three-hour test window. Coverage will be adjusted as necessary within the window.

The Pad Abort Test is Boeing’s first test flight for NASA’s Commercial Crew Program, a public-private partnership with the American aerospace industry to launch astronauts to the International Space Station on American rockets and spacecraft from American soil for the first time since 2011.

The test is designed to verify that each of Starliner’s systems will function not only separately, but in concert, to protect astronauts by carrying them safely away from the launch pad in the unlikely event of an emergency prior to liftoff.

Boeing Target Flight Dates

Boeing’s CST-100 Starliner prepares for electromagnetic interference and electromagnetic contamination (EMI/EMC) testing in a specialized test chamberNASA and Boeing continue to evaluate flight dates to deliver realistic schedules to the public and both have agreed on the following target dates:

  • Boeing Pad Abort Test: Nov. 4, 2019 at White Sands Missile Range in New Mexico.
  • Boeing Orbital Flight Test: Dec. 17, 2019 at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida

NASA and its commercial partners remain committed to flying astronauts as quickly as we can without compromising crew safety, and we always will give safety precedence over schedule.  As more dates are reviewed, NASA will update its schedule.

SpaceX Demo-2 Astronauts Walkthrough Launch Day Operations

SpaceX recently held a training event at its facility in Hawthorne, California for prelaunch operations with NASA astronauts Bob Behnken and Doug Hurley and ground operators for the company’s Demo-2 mission to the International Space Station as part of NASA’s Commercial Crew Program. The training provided an opportunity for the integrated team to dry run all of the activities, procedures and communication that will be exercised on launch day when a Crew Dragon spacecraft launches on a Falcon 9 rocket from Launch Complex 39A in Florida.

The astronauts performed suit-up procedures alongside the SpaceX ground closeout team and suit engineers using the same ground support equipment, such as the seats and suit leak check boxes, that will be used on launch day. Following crew suit-up, the teams performed a simulated launch countdown with the astronauts inside a Crew Dragon simulator and performed several emergency egress, or exit, scenarios.

The training exercise is one of several that NASA astronauts have participated in with our commercial crew partners, Boeing and SpaceX, in preparation for crew flight tests. NASA’s Commercial Crew Program continues to place astronaut safety at the forefront of preparations for human spaceflight.

 

 

 

Astronauts and Ground Teams Put Emergency Escape Procedures to the Test

An emergency medical technician cares for an astronaut with simulated injuries during a joint emergency escape and triage exercise led by NASA, along with Boeing and United Launch Alliance, at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida on July 24, 2019. The simulation is part of a series in preparation for upcoming crew flights to the International Space Station as part of NASA’s Commercial Crew Program. Photo credit: NASA/Ben Smegelsky

NASA led a joint emergency escape and triage simulation with Boeing and United Launch Alliance (ULA) on July 24 at Space Launch Complex 41 on Cape Canaveral Air Force Station (CCAFS) in Florida in preparation for upcoming crew flights to the International Space Station. The exercise ranged from astronauts and support teams quickly escaping the launch pad to emergency personnel practicing rescue and life support procedures focused on the safety of the launch site teams.

Medical and fire-rescue personnel park ambulances and set up a decontamination and triage area for the joint emergency escape and triage simulation.

In the event of an emergency on launch day, astronauts and support teams would need to exit the launch pad as quickly as possible. The exercise was designed to validate the escape procedures from the crew access tower – the nearly 200-foot-tall structure astronauts will ascend to the same level as the spacecraft on top of the rocket – to a pre-staged medical location a safe distance away from the launch pad. The second half of the rehearsal included the rescue teams that would conduct initial triage for the crew and ground team.

NASA astronauts Josh Cassada, currently in training for the second flight with crew aboard Boeing’s CST-100 Starliner spacecraft, and Eric Boe, along with astronaut candidate Jasmin Moghbeli, served as flight crew for the simulation.

During the exercise, the astronauts and support teams put on portable respirators and made their way to the emergency egress system – a commercial, off-the-shelf zip line modified and constructed as a safety measure for human spaceflight – for escape. The emergency system is on the same level of the crew access tower as the crew access arm, the bridge astronauts walk across to enter the Starliner. The launch teams, secured in seats, descended the tower to the pad perimeter below.

Wearing portable respirators, astronauts and personnel with simulated injuries exit an armored vehicle during the simulation.

Next, using mine-resistant ambush-protected vehicles, known as MRAPs, the crew members drove just under a mile north to a helipad, where flight surgeons and the emergency medical services teams waited with ambulances and a decontamination vehicle. Astronauts evacuating from a pad emergency may come into contact with hazardous substances, such as fuel from the rocket or spacecraft, and must be decontaminated to allow medical personnel to safely treat them. In a true emergency, anyone injured would then be transported via helicopter to area hospitals.

Personnel from Kennedy Space Center emergency medical services, pad rescue teams and environmental health, along with CCAFS fire and rescue and the U.S. Air Force 45th Space Wing worked in tandem with NASA, Boeing and ULA to whisk the astronauts to safety – and, in the process, test necessary procedures and equipment, while providing new team members valuable experience.

The simulation is one of several NASA has conducted with our commercial crew partners, Boeing and SpaceX, in preparation to launch astronauts from American soil. NASA’s Commercial Crew Program continues to place astronaut safety at the forefront of preparations for human spaceflight.

Flight Test Dates Under Review

SpaceX's Crew Dragon and Boeing's Starliner will transport astronauts to the International Space Station.*NASA and Boeing provided updates on Oct. 11, 2019. For the details on Boeing flight tests and the schedule, visit https://go.nasa.gov/328xeSL.

NASA’s Commercial Crew Program and private industry partners, Boeing and SpaceX, are working to return human spaceflight launches to the International Space Station from U.S. soil on American rockets and spacecraft.

NASA and our partners want to fly astronauts as quickly as we can without compromising the safety of our astronauts and always will give safety precedence over schedule. However, our schedules matter. The NASA Administrator has directed all programs in the Human Exploration and Operations Directorate to reexamine flight dates once new leadership is in place to deliver realistic schedule plans.

This is a pivotal time for NASA and our partners. The final phase of our development and testing is critical to the safety of our astronauts and the success of our mission – regular, reliable and cost-effective human transportation to and from the International Space Station on commercially-owned and operated American space systems.

We are testing, learning and incorporating changes to improve the design and operation of these next-generation human space transportation systems. As a result, our providers have improved the safety of these systems, and the effect of these changes have impacted schedules.

NASA, SpaceX Earn Emmy Nomination for Demo-1 Mission Coverage

NASA and SpaceX were nominated for an Emmy! Teams from the agency’s Commercial Crew Program are among six finalists in the Outstanding Interactive Program category for their coverage of SpaceX’s Demo-1 mission in March 2019.

The nomination recognizes the teams’ tremendous efforts in sharing with the world Crew Dragon’s historic journey to the International Space Station. The mission marked the first time a commercially operated spacecraft docked with the space station, and brought the United States a critical step closer to launching astronauts in American spacecraft on American rockets from American soil.

The uncrewed SpaceX Crew Dragon spacecraft s pictured with its nose cone open revealing its docking mechanism while approaching the International Space Station's Harmony module on March 3, 2019.
The uncrewed SpaceX Crew Dragon spacecraft is pictured with its nose cone open revealing its docking mechanism while approaching the International Space Station’s Harmony module on March 3, 2019. Image credit: NASA

NASA and SpaceX spent years preparing a collaborative approach to mission coverage, which featured multiple live broadcasts from agency and company facilities across the country during each phase of the mission, continuing through Crew Dragon’s stunning return to Earth. Throughout NASA’s coverage, the agency engaged social media users around the world and at local social media influencer gatherings at the agency’s Kennedy Space Center in Florida.

The Creative Arts Emmy Awards ceremony will be held Sept. 14-15, 2019.