Commercial Crew Astronauts Survey Launch Pad Progress

Commercial Crew Program astronauts visit Launch Complex 39A at Kennedy Space Center in Florida.

Commercial Crew Program astronauts (left to right) Suni Williams, Eric Boe, Bob Behnken and Doug Hurley visited Launch Complex 39A at NASA’s Kennedy Space Center (KSC) March 27. The astronauts toured the pad for an up-close look at preparations in work for the SpaceX Crew Dragon flight tests. The tower modifications, including the recent removal of the rotating service structure, are proof of progress in outfitting the pad for crew once again. Future integration of the crew access arm will allow for safe crew entry and exit from the spacecraft for launch and in the unlikely event of a pad abort scenario.

Commercial Crew Program astronauts outside SpaceX’s processing hangar.

During their visit to KSC, the astronauts also stopped outside SpaceX’s processing hangar, adjacent to the launch pad and talked directly with SpaceX employees about their excitement as the program builds momentum. SpaceX and Boeing are working toward returning human space flight launches to the U.S. with flight tests targeted later this year.

Commercial Crew Program Simulates Astronaut Rescue Missions

A C-17 Globemaster aircraft from the Alaska Air National Guard’s 249th Airlift Squadron flies overhead as pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon complete an astronaut rescue training exercise inside a covered life raft on the Atlantic Ocean. The pararescue specialists, supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, conducted the exercise in April with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The specially designed 20-person life raft is equipped with enough food, water and medical supplies to sustain both rescuers and crew for up to three days, if necessary.

As NASA, Boeing and SpaceX prepare for commercial human spaceflight launches, they are training for a variety of contingencies, including emergency water landings. NASA’s Commercial Crew Program Landing and Recovery Team is leading a multi-agency operation to practice astronaut rescue missions.

Rescue and recovery involves meticulous planning and close coordination between NASA, the Department of Defense (DOD), and company recovery teams for Starliner and Crew Dragon. These are the spacecraft of Boeing and SpaceX that will fly astronauts to and from the International Space Station from U.S. soil. In the event of a variety of contingency landings, an elite team of pararescue specialists is prepared to rescue the crew anywhere in the world.

For more details, visit: https://www.nasa.gov/feature/rescue-operations-take-shape-for-commercial-crew-program-astronauts

Young Engineer Shapes Commercial Human Spaceflight Policy

Kathleen O’Brady is a certification systems engineer at NASA’s Kennedy Space Center in Florida.

Kathleen O’Brady’s five-year-old son can name all of the planets in our solar system and even some nearby stars. Perhaps the brightest star he knows though is his mom. She is helping shape policy in the new era of commercial human spaceflight.

O’Brady plays a key role in NASA’s Commercial Crew Program (CCP), which has partnered with Boeing and SpaceX to develop spacecraft to fly NASA astronauts to the International Space Station, and return them safely home. NASA is in the process of certifying two new crew transportation systems—Boeing’s Starliner and SpaceX’s Crew Dragon—at the same time. As a certification systems engineer in the program’s Systems Engineering and Integration Office at NASA’s Kennedy Space Center in Florida, O’Brady was responsible for defining an integrated plan for certification which is being executed by both providers.

“I honestly loved it,” O’Brady said. “It’s like putting a puzzle together. Half the problem is trying to make sure you understand what all the pieces are, and then you start slowly integrating those pieces.”

Boeing and SpaceX are targeting test flights with crew on board for late this year. “We all have to do the job right,” O’Brady said. “We have a duty to return our astronauts to flight. We’re going to use these private companies and they’re going to do a fantastic job.”

Parachute Testing Lands Partners Closer to Crewed Flight Tests

At left, Boeing conducted the first in a series of parachute reliability tests its Starliner flight drogue and main parachute system Feb. 22, 2018, over Yuma Arizona. Photo Credit: NASA. At right, SpaceX performed its fourteenth overall parachute test supporting Crew Dragon development March 4, 2018, over the Mojave Desert in Southern California. The test demonstrated an off-nominal, or abnormal, situation, deploying only one of the two drogue chutes and three of the four main parachutes. Photo credit: SpaceX
At left, Boeing conducted the first in a series of parachute reliability tests its Starliner flight drogue and main parachute system Feb. 22, 2018, over Yuma Arizona. Photo Credit: NASA. At right, SpaceX performed its fourteenth overall parachute test supporting Crew Dragon development March 4, 2018, over the Mojave Desert in Southern California. The test demonstrated an off-nominal, or abnormal, situation, deploying only one of the two drogue chutes and three of the four main parachutes. Photo credit: SpaceX

Crew safety is paramount in the return of human spaceflight launches from Florida’s Space Coast, and the latest round of parachute testing is providing valuable data to help industry partners Boeing and SpaceX meet NASA’s requirements for certification.

On March 4, SpaceX performed its 14th overall parachute test supporting Crew Dragon development. During this test, a C-130 aircraft transported the parachute test vehicle, designed to achieve the maximum speeds that Crew Dragon could experience on reentry, over the Mojave Desert in Southern California and dropped the spacecraft from an altitude of 25,000 feet. In February, the first in a series of reliability tests of the Boeing flight drogue and main parachute system was conducted by releasing a long, dart-shaped test vehicle from a C-17 aircraft over Yuma, Arizona. Both tests resulted in successful touchdowns of the parachute systems.

SpaceX will conduct its next parachute system test in the coming weeks in the California desert, and Boeing is scheduled for its third of five planned qualification tests of its parachute system in May. Both providers’ parachute system qualification testing is scheduled to be completed by fall 2018. The partners are targeting the return of human spaceflight from Florida’s Space Coast this year, and are currently scheduled to begin flight tests late this summer.

NASA’s Continued Focus on Returning U.S. Human Spaceflight Launches

International Space StationNASA’s Commercial Crew Program and private industry partners, Boeing and SpaceX, continue to develop the systems that will return human spaceflight to the United States. Both commercial partners are undertaking considerable amounts of testing in 2018 to prove space system designs and the ability to meet NASA’s mission and safety requirement for regular crew flights to the International Space Station.

“The work Boeing and SpaceX are doing is incredible. They are manufacturing spaceflight hardware, performing really complicated testing and proving their systems to make sure we get it right.” said Kathy Lueders, program manager NASA Commercial Crew Program. “Getting it right is the most important thing.”

Both Boeing and SpaceX plan to fly test missions without crew to the space station prior to test flights with a crew onboard this year. After each company’s test flights, NASA will work to certify the systems and begin post-certification crew rotation missions. The current flight schedules for commercial crew systems provide about six months of margin to begin regular, post-certification crew rotation missions to the International Space Station before contracted flights on Soyuz flights end in fall 2019.

As part of the agency’s normal contingency planning, NASA is exploring multiple scenarios as the agency protects for potential schedule adjustments to ensure continued U.S. access to the space station. One option under consideration would extend the duration of upcoming flight tests with crew targeted for the end of 2018 on the Boeing CST-100 Starliner and SpaceX Crew Dragon. The flights could be extended longer than the current two weeks planned for test flights, and likely less than a six-month full-duration mission. The agency also is assessing whether there is a need to add another NASA crew member on the flight tests.

This would not the first time NASA has expanded the scope of test flights. NASA had SpaceX carry cargo on its commercial demonstration flight to the International Space Station in 2012, which was not part of the original agreement. This decision allowed NASA to ensure the crew aboard the space station had the equipment, food and other supplies needed on the station after the end of the agency’s Space Shuttle Program.

As with all contingency plans, the options will receive a thorough review by the agency, including safety and engineering reviews. NASA will make a decision on these options within the next few months to begin training crews.

NASA’s Commercial Crew Program Target Test Flight Dates

The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation. NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demonstration Mission 1 for SpaceX. After the uncrewed flight tests, both companies will execute a flight test with crew prior to being certified by NASA for crew rotation missions. The following schedule reflects the most recent publicly releasable dates for both providers.

Targeted Test Flight Dates:
Boeing Orbital Flight Test (uncrewed): August 2018
Boeing Crew Flight Test (crewed): November 2018
SpaceX Demonstration Mission 1 (uncrewed): August 2018
SpaceX Demonstration Mission 2 (crewed): December 2018

NASA’s Commercial Crew Program Target Test Flight Dates

The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation. NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demonstration Mission 1 for SpaceX. After the uncrewed flight tests, both companies will execute a flight test with crew prior to being certified by NASA for crew rotation missions. The following schedule reflects the most recent publicly releasable dates for both providers.

Targeted Test Flight Dates:
Boeing Orbital Flight Test (uncrewed): August 2018
Boeing Crew Flight Test (crewed): November 2018
SpaceX Demonstration Mission 1 (uncrewed): April 2018
SpaceX Demonstration Mission 2 (crewed): August 2018

NASA’s Commercial Crew Program Target Flight Dates

The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation. NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demonstration Mission 1 for SpaceX. After the uncrewed flight tests, both companies will execute a flight test with crew prior to being certified by NASA for crew rotation mission. The following schedule reflects the most recent publicly-releasable dates for both providers.

Targeted Test Flight Dates:
Boeing Orbital Flight Test: June 2018
Boeing Crew Flight Test: August 2018
SpaceX Demonstration Mission 1: February 2018
SpaceX Demonstration Mission 2 (crewed): June 2018

I Will Launch America: Trip Healey

I-will-Launch-Trip_FB

A successful space mission requires the coordinated efforts of human spaceflight experts, working thousands of hours, to come together at just the right moment – not only on launch day, but months and even years ahead of time.

For one Marine veteran, tapping into his military background to coordinate those fine details is part of the fun and accomplishment he sought when he came to NASA.

“I am a Marine, and as a Marine it’s all about mission accomplishment, taking care of your troops, and getting the job done,” said Trip Healey, mission manager for NASA’s Commercial Crew Program at Kennedy Space Center in Florida. “I think that background helps me in my position here.”

The role of a mission manager is to facilitate collaboration between NASA and the commercial providers, and ensure the requirements and processes necessary to conduct a successful flight are in place and ready prior to the flight. Healey is one of two mission managers assigned to Boeing. He will manage Boeing’s uncrewed flight test and first crew rotation mission from a NASA perspective, while his teammate in Houston will manage the company’s crewed flight test and second crew rotation mission. Read the full story at http://go.nasa.gov/2kjLBR6

Commercial Crew Program Completes Year of Transition

2016YIR-CCP

The past year marked a substantial transition for NASA’s Commercial Crew Program and its partners as they moved from design of critical elements and systems in previous years to the manufacturing of the spacecraft and launch vehicles. Working on independent spacecraft and launch systems, Boeing and SpaceX made substantial modifications to launch complexes in Florida and performed the first integrated simulations of the teams that will oversee the flights. Along the way, advances were overseen by NASA engineers and the astronauts who will fly the spacecraft into orbit for the flight tests. Read about the dynamic 2016 achievements here.