Lueders Featured in NASA Podcast

Kathy Lueders Manager of the Commercial Crew Program, Kathy Lueders, is featured on Episode 49 of “Houston We Have a Podcast.” The episode discusses a brief history of the space program, how it started, and where it is now. Lueders talks about two commercial partners, Boeing and SpaceX, and the work they are doing to design, build and launch new spacecraft that will carry our astronauts to and from the International Space Station. You can listen here:


I Will Launch America: Trip Healey


A successful space mission requires the coordinated efforts of human spaceflight experts, working thousands of hours, to come together at just the right moment – not only on launch day, but months and even years ahead of time.

For one Marine veteran, tapping into his military background to coordinate those fine details is part of the fun and accomplishment he sought when he came to NASA.

“I am a Marine, and as a Marine it’s all about mission accomplishment, taking care of your troops, and getting the job done,” said Trip Healey, mission manager for NASA’s Commercial Crew Program at Kennedy Space Center in Florida. “I think that background helps me in my position here.”

The role of a mission manager is to facilitate collaboration between NASA and the commercial providers, and ensure the requirements and processes necessary to conduct a successful flight are in place and ready prior to the flight. Healey is one of two mission managers assigned to Boeing. He will manage Boeing’s uncrewed flight test and first crew rotation mission from a NASA perspective, while his teammate in Houston will manage the company’s crewed flight test and second crew rotation mission. Read the full story at

Commercial Crew Program Completes Year of Transition


The past year marked a substantial transition for NASA’s Commercial Crew Program and its partners as they moved from design of critical elements and systems in previous years to the manufacturing of the spacecraft and launch vehicles. Working on independent spacecraft and launch systems, Boeing and SpaceX made substantial modifications to launch complexes in Florida and performed the first integrated simulations of the teams that will oversee the flights. Along the way, advances were overseen by NASA engineers and the astronauts who will fly the spacecraft into orbit for the flight tests. Read about the dynamic 2016 achievements here.

NASA, Industry Team Up to Innovate Human Spaceflight

CCP-1275x1650NASA’s Commercial Crew Program set out from its beginning to provide a setting that would combine the expertise of NASA’s 50 years of human spaceflight experience with the aerospace industry’s know-how in manufacturing to produce cutting-edge spacecraft to take astronauts into low-Earth orbit. The payoff has been a level of innovation in numerous areas of spacecraft development and operation.

“From the outset we received very creative ideas and original approaches to development of individual systems along with new processes used to build several spacecraft in rapid succession,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “The companies painted for us an exciting picture of innovation and we’ve worked together to first refine our requirements and now to ensure that they are met as the crewed vehicles are taking shape.” Read more:


ICYMI: President Touts Advances in Commercial Crew Spacecraft

Obama-SerenaCCP-stitchIn case you missed it, President Barack Obama talked Thursday, Oct. 13, with the two companies developing the next generation of American spacecraft designed to take NASA astronauts into orbit and to the International Space Station.

Touring exhibits by Boeing and SpaceX during the Frontiers Conference at Carnegie Mellon University and University of Pittsburgh in Pittsburgh, Obama discussed the immediate future of space exploration and touted the advances made in the public-private partnerships between the companies and NASA’s Commercial Crew Program. Because the new spacecraft will enable a larger space station crew and more research time in space, they are seen as critical avenues to help scientists and astronauts explore the best methods to send crews into deep space and eventually to Mars.

The goal is “to lead humanity farther out into the final frontier of space,” the president said. “Not just to visit, but to stay.”

Obama even took the controls of a simulator designed to mimic the flight of Boeing’s CST-100 Starliner spacecraft. He conducted a Starliner docking maneuver similar to the one astronauts will actually fly in the future during crew rotation missions to the orbiting laboratory.

“Your ride is here,” Obama said after completing the exercise.

“I’m not sure who had more fun today – the president or me,” said NASA astronaut Serena Aunon-Chancellor, who helped demonstrate how the simulator worked. “He was a natural docking the Starliner to the space station!”

The president also inspected SpaceX’s Crew Dragon design up-close and talked at length with Aunon-Chancellor and a company official.

“You almost want to get in and take off, don’t you?” the president said.

“While visiting Dragon, we discussed the future of human spaceflight and how important it is to safely and reliably get our crew to the station in low-Earth orbit so NASA can focus on human exploration in deep space,” Aunon-Chancellor said. “We’re excited about the progress our partners are making and look forward to flying with them soon.” Photo credit: Michael Henninger/ Pittsburgh Post-Gazette

Boeing Unveils New Home for Starliner Trainers


ControlBridgeAstronauts have new training equipment at NASA’s Johnson Space Center in Houston after Boeing installed its Crew Part-Task Trainers that simulate aspects of missions aboard the company’s CST-100 Starliner spacecraft. The spacecraft and training systems are in development and manufacturing in partnership between the company and NASA’s Commercial Crew Program in order to begin flying astronauts to the International Space Station from launch sites in Florida. 

Boeing officials, including former space shuttle commander Chris Ferguson, offered news media and others a tour of the facility in Houston where astronauts will rehearse for Starliner missions. Astronauts Suni Williams and Bob Behnken, two of four selected to train to fly Commercial Crew Program flight tests with Boeing and SpaceX, took the controls of the simulator to demonstrate the trainers as engineers looked on from separate workstations. During normal training operations, the engineers will oversee the situations as astronauts perform simulated missions. 

NASA’s astronauts have relied on simulators from the beginning of human spaceflight to practice the critical steps of a mission before they have to perform the real thing. As simulators increased in capability, the training became so life-like that astronauts routinely reported simulator flights being more stressful than actual missions. For more:


New Views of CST-100 Starliner Landing Tests

Check out these two additional views of the drop tests campaign for Boeing’s CST-100 Starliner design at NASA’s Langley Research Center in Virginia. The Starliner mock-up was dropped several times from about 30 feet and released on angles and at speeds to evaluate realistic conditions the spacecraft could encounter during the end phase of an actual mission when astronauts are aboard and the spacecraft is touching down in the American Southwest.

Starliner is equipped with airbags to help cushion the impact for the crew inside. Whether it lands on solid ground as planned, or has to splash down into water for an abort, the airbags are to inflate to provide a buffer for the spacecraft. The tests at Langley are being performed inside a landmark red and white gantry at the center that has been used throughout NASA’s history to evaluate many designs ranging from airplanes to the lunar lander for Apollo. The Starliner completed water landing qualification testing earlier this year in Langley’s Hydro Impact Basin. The results are used to confirm the design and NASA Commercial Crew Program engineers will also make their own evaluations from test results.

Starliner is one of two spacecraft in development in partnership with Commercial Crew to fly astronauts to the International Space Station. Tasked with carrying up to four people at a time, both the Boeing Starliner and SpaceX Crew Dragon are big enough to allow an expansion of the resident crew on the orbiting laboratory which means research time on the station will double.CTPD Drop Test

I Will Launch America: Brittani Sims

I will Launch_Brittani Sims_FB

Brittani Sims doubted at times she would ever get a chance to put her engineering acumen to work at NASA, but an internship stressing science, technology, engineering and math education – STEM – showed her what was possible.  She began her NASA career in the Space Shuttle Program and is now working in Commercial Crew as a certification systems engineer for the team working with SpaceX to develop the Crew Dragon spacecraft and launch systems to take astronauts to the International Space Station. Read more about Sims at

Workers Install Astronauts’ New Bridge to Orbit

Commerical Crew Program (CCP) Crew Access Arm InstallationA 50-foot-long, 90,000-pound bridge to space known as the Crew Access Arm was installed today at Space Launch Complex 41 at Cape Canaveral Air Force Station adjacent to NASA’s Kennedy Space Center in Florida. Workers have been modifying the launch pad so astronauts can climb aboard Boeing’s CST-100 Starliner spacecraft ahead of NASA Commercial Crew Program missions to the International Space Station.

Commerical Crew Program (CCP) Crew Access Arm InstallationWhen poised for space on launch day, the Starliner will be standing atop a United Launch Alliance Atlas V rocket. The arm and a White Room were attached to the Crew Access Tower, a 200-foot-tall structure at the launch pad that has been built specifically for the unique needs of astronauts. For example, crews wearing pressure suits and helmets need more room to move around than people wearing regular clothes, so the areas and elevators are wide enough to accommodate them. There also was special care to avoid anything that could snag a spacesuit.

The construction by ULA has taken place even as the pad has remained active for launches of the Atlas V on missions to deliver satellites into orbit and to loft NASA spacecraft on their own missions, including September’s launch of the OSIRIS-REx asteroid sampling spacecraft.

The arm’s placement is the latest in a growing list of accomplishments for the Commercial Crew Program and its partners as NASA works to restore America’s capability to launch astronauts to the space station from its own soil. With Boeing’s Starliner and SpaceX’s Crew Dragon flying astronauts to the station, the crew there can grow to seven residents and the amount of science time available for astronauts will double. That means enhanced research opportunities to figure out the mysteries of long-duration spaceflight as well as more time to work on aspects of life on Earth that can be improved with the help of science performed in space.

“You have to stop and celebrate these moments in the craziness of all the things we do,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “It’s going to be so cool when our astronauts are walking out across this access arm to get on the spacecraft and go to the space station.”

Photo credit: NASA/Kim Shiflett