Final Rocket Segment Arrives in Florida

The first stage of the rocket that will launch Boeing’s CST-100 Starliner spacecraft to the International Space Station on the company’s uncrewed Orbital Flight Test has arrived in Cape Canaveral, Florida, completing delivery of all hardware for the United Launch Alliance (ULA) Atlas V rocket.

The Atlas V first stage booster rolled off of the Mariner cargo vessel on Dec. 7 at the Cape Canaveral wharf for the short drive to the Atlas Spaceflight Operations Center for receiving inspections and checkout.

Mariner is the ship that ULA uses to transport rocket segments, or stages, from the company’s manufacturing plant in Decatur, Alabama to the launch site in Florida. The Atlas V stage departed the factory Nov. 28 for the journey of nearly 2,000 miles.

Early in 2019, the stage will move further north to the Vertical Integration Facility to be raised on the mobile launch platform. The twin solid rocket boosters will be mounted to the bottom of the first stage. Then, the top of the rocket stack, which consists of the interstage, Centaur upper stage and payload adapter, will be hoisted into position.

This delivery means all of the hardware that ULA needs to launch the first Boeing Starliner has been received at the launch site for final integration.

NASA’s Commercial Crew Program is working with Boeing and SpaceX to return human spaceflight launch capability to the United States. Following Boeing’s Orbital Flight Test in March 2019, the Starliner will launch on the Atlas V rocket with astronauts aboard for a Crew Flight Test to the space station targeting August 2019. Boeing also will fly a pad abort test in between the uncrewed and crew test missions.

 

First Starliner to Launch Crew Ready for Environmental Testing

Boeing technicians carefully close Starliner’s shipping container at the company’s Florida factory ahead of its trip to El Segundo, Calif.

The Boeing CST-100 Starliner spacecraft destined to fly astronauts to the International Space Station for Boeing’s Crew Flight Test (CFT) as part of NASA’s Commercial Crew Program is ready to undergo a series of flight-like simulations similar to the actual environments the spacecraft will experience during different stages of flight.

Boeing’s first crewed Starliner finished initial production at Kennedy Space Center, Fla. and is readied for its cross-country trip.

The spacecraft recently arrived at the company’s facilities in El Segundo, California for the series of tests. In order to ship the spacecraft, technicians painstakingly prepared and secured Starliner inside its shipping container on Nov. 12, before the spacecraft completed its 10-day, cross-country trip.

Now, Starliner will begin the test campaign wherein acoustic and vibration testing will simulate the environment during launch and ascent, thermal vacuum testing will expose Starliner to the extreme heat and cold it will experience in orbit, and electromagnetic interference/electromagnetic compatibility testing will make sure that those signals or radiation do not interfere with operations on Starliner or with sensitive equipment on station. The series of tests are expected to last about three months.

Starliner is unboxed inside Boeing’s satellite test facilities in California to prepare for environmental qualification testing.

The company’s CFT is targeted for August 2019, and will be Starliner’s first flight with crew onboard. Following the CFT, Boeing will refurbish the spacecraft for regular crewed missions to the space station.

During these environmental tests, Boeing also expects to complete production in its Florida factory on the Starliner to be flown in the company’s uncrewed Orbital Flight Test, targeted for March 2019.

The shipping container with Starliner’s crew module arrives at Boeing’s facilities in El Segundo, Calif.

Boeing is developing the Starliner spacecraft as part of NASA’s Commercial Crew Program. The spacecraft will launch on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

NASA’s Commercial Crew Program Target Test Flight Dates

The next generation of American spacecraft and rockets that will launch astronauts to the International Space Station are nearing the final stages of development and evaluation. NASA’s Commercial Crew Program will return human spaceflight launches to U.S. soil, providing safe, reliable and cost-effective access to low-Earth orbit on systems that meet our safety and mission requirements.

To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demo-1 for SpaceX. After the uncrewed flight tests, both companies will carry out spacecraft abort tests to demonstrate their crew escape capability during an actual on-pad, or ascent emergency. The final test flights for each company will be crew flight tests to the space station prior to being certified by NASA for crew rotation missions. The following target dates reflect the current schedule as of Friday, Dec. 7.

Test Flight Planning Dates:
Boeing Orbital Flight Test (uncrewed): March 2019
Boeing Pad Abort Test: Between OFT and CFT
Boeing Crew Flight Test (crewed): August 2019
SpaceX Demo-1 (uncrewed): January 17, 2019
SpaceX In-Flight Abort Test: Between Demo-1 and Demo-2
SpaceX Demo-2 (crewed): June 2019

SpaceX also completed a pad abort test in 2015. Following the test flights, NASA will review the performance data and resolve issues as necessary to certify the systems for operational missions.  Boeing, SpaceX and the Commercial Crew Program are actively working to be ready for the operational missions; however, as with all human spaceflight development, learning from each test and adjusting as necessary to reduce risk to the crew may override planning dates.

Anticipated Readiness Dates for Operational Missions:
First operational mission: August 2019
Second operational mission: December 2019

For more information, see https://go.nasa.gov/2QwW3Sd.

Astronauts Tour SpaceX Rocket Facility in Texas

NASA astronauts Mike Hopkins and Bob Behnken at SpaceX’s Rocket Development Facility in McGregor, Texas.

NASA astronauts who will be the first humans to fly aboard SpaceX’s Crew Dragon spacecraft recently toured the company’s Rocket Development Test Facility in McGregor, Texas.

NASA astronauts Bob Behnken and Doug Hurley at SpaceX’s Rocket Development Facility in McGregor, Texas.

NASA astronauts Bob Behnken and Doug Hurley are set to crew SpaceX’s Demo-2 flight test in June 2019, which will be the first flight of Crew Dragon with people onboard.

NASA astronauts Victor Glover and Mike Hopkins at SpaceX’s Rocket Development Facility in McGregor, Texas.

NASA astronauts Victor Glover and Mike Hopkins will crew SpaceX’s first regular mission to the International Space Station, following Demo-2 and NASA’s certification of SpaceX commercial crew systems.

NASA astronaut Doug Hurley at SpaceX’s Rocket Development Facility in McGregor, Texas.

NASA’s Commercial Crew Program is working with SpaceX and with Boeing to return human spaceflight launch capability from the United States.

NASA astronaut Bob Behnken at SpaceX’s Rocket Development Facility in McGregor, Texas.

Launch Teams Simulate Boeing Uncrewed Flight Test Prelaunch Procedures

Inside the Boeing Mission Control Center at Kennedy Space Center, Fla., launch control teams for the CST-100 Starliner rehearse a fully integrated prelaunch simulation of the spacecraft’s upcoming Orbital Flight Test. Boeing Spacecraft Launch Conductor Louis Atchison speaks on console to the Mission Management Team as the countdown in the launch simulation progresses.

Boeing, United Launch Alliance (ULA) and NASA completed an integrated rehearsal of prelaunch procedures for Boeing’s first uncrewed test flight of the CST-100 Starliner spacecraft aboard an Atlas V rocket for commercial crew missions to the International Space Station. The simulation, conducted on Nov. 7, focused on launch procedures beginning at five hours before launch, and continuing through a simulated scrub before liftoff.

Inside the White Flight Control Room in the Mission Control Center at NASA’s Johnson Space Center in Houston, Boeing’s Flight Control Team rehearses prelaunch procedures for the company’s Orbital Flight Test of Starliner.

The rehearsal consisted of launch teams participating from Boeing and NASA facilities at Kennedy Space Center in Florida and Johnson Space Center in Houston. It incorporated voice communications, pad closeout events, polling for tanking, or fueling, readiness, and discussions about conditions, including flight hardware and weather.

Boeing’s Pad Team Lead, Melanie Weber, performs simulated prelaunch operations inside the Boeing Mockup Trainer for the Starliner located in Houston. As launch control teams from NASA, Boeing and ULA participate in a prelaunch rehearsal for the Starliner’s upcoming Orbital Flight Test, Weber practices her launch day pad operations from inside the trainer.

Prelaunch anomalies were introduced into the rehearsal to provide opportunities for the teams to execute their resolution process. A scrub was called during the countdown rehearsal, allowing participants to test procedures for a delay and a decision to de-tank and prepare for a launch attempt the next day.

Boeing’s first uncrewed test flight, known as Orbital Flight Test (OFT), is slated for launch aboard an Atlas V rocket in March 2019. This will be the first flight of the Starliner, and it is a major step toward demonstrating that the spacecraft is ready to begin carrying astronauts to the space station.

Members of NASA’s launch support team gather in the Emergency Operations Center (EOC) at Kennedy Space Center, Fla. to rehearse prelaunch operations for the Orbital Flight Test of Boeing’s Starliner spacecraft. The EOC is where directors for medical triage and launch rescue will execute real-time responses in the unlikely event of an emergency on launch day.

Boeing is manufacturing three Starliner spacecraft in collaboration with NASA’s Commercial Crew Program. Starliner is designed to be reused up to 10 times.

Astronauts Tour Boeing Spacecraft Test Facilities

Commercial crew astronauts Nicole Mann, Eric Boe and Chris Feguson in El Segundo, Calif.

Astronauts slated to fly on Boeing’s CST-100 Starliner for its upcoming Crew Flight Test recently toured two spacecraft testing facilities in southern California. NASA astronauts Eric Boe and Nicole Mann, and Boeing astronaut Chris Ferguson, met with employees who conduct the structural and environmental testing on the spacecraft built to ferry them to the International Space Station from U.S. soil.

NASA astronaut Eric Boe in Huntington Beach, Calif.

Upcoming environmental qualification testing is a major milestone on the road to launch. Performed at the El Segundo, Calif. test facility, it ensures that the CST-100 Starliner, designed and built in Florida, can withstand the extreme environments of space. Likewise, structural testing conducted in Huntington Beach verifies that the vehicle hardware is adequately built to withstand the pressures and load dynamics during flight.

Commercial crew astronauts Eric Boe, Chris Ferguson and Nicole Mann in Huntington Beach, Calif.

Boeing test teams will put the spacecraft through several assessments including thermal vacuum testing which simulates hot and cold temperature swings the vehicle experiences on orbit. They’ll also perform acoustic testing, meant to safely shake the capsule to ensure it’s been properly built, and electromagnetic testing to see whether the frequencies expected in space would cause any dangerous interference.

Boeing astronaut Chris Ferguson takes a selfie with a Boeing employee in Huntington Beach, Calif.

Launch Gear Arrives for Boeing’s Uncrewed Flight Test

Mariner sailed into Port Canaveral carrying the Launch Vehicle Adapter. Photo credit: United Launch Alliance

The Launch Vehicle Adapter (LVA) that will attach Boeing’s CST-100 Starliner spacecraft to an Atlas V rocket for an uncrewed flight test to the International Space Station arrived at Cape Canaveral, Fla. Nov. 12, after traveling by ship nearly 2,000 miles from the United Launch Alliance (ULA) factory in Decatur, Ala.

Technicians unloaded the elements and they were transported for the LVA to begin integrated operations with the rocket’s Centaur upper stage.

The crated LVA rolls off Mariner. Photo credit: United Launch Alliance

The LVA is the specially-designed structure that will be fitted to the top of Centaur. It will soon be attached to the Centaur during pre-launch stacking operations and eventually support the Starliner spacecraft during launch of Boeing’s Orbital Flight Test (OFT), targeted for March 2019.

The LVA is seen here readied for shipping from Decatur. Photo credit: United Launch Alliance

Also part of the LVA is the aeroskirt, which ULA designed in collaboration with Boeing and NASA for added aerodynamic stability during flight. This metallic orthogrid structure will smooth the air flow over the Starliner-Atlas V vehicle, and will separate from the vehicle after the first stage of flight during normal operations. The aeroskirt also has provisions for venting in the unlikely event the Starliner abort engines are fired.

OFT is part of NASA’s Commercial Crew Program to return human spaceflight launch capability to the U.S. Following the uncrewed flight test, Boeing will launch its Crew Flight Test, which will carry two NASA astronauts and one Boeing astronaut to the International Space Station.

SpaceX Rehearses Helicopter Landing at Sea

When astronauts splash down into the ocean after their journey to the International Space Station on SpaceX’s Crew Dragon spacecraft, recovery teams must be able to transport them to land quickly. In the unlikely event of an astronaut medical emergency, SpaceX has outfitted its recovery ship, GO Searcher, with a medical treatment facility and a helipad in the center of the vessel.

Recently the company completed helicopter landing and patient loading rehearsals on the ship, practicing how the helicopter will pick up astronauts and fly them to a nearby hospital.

The aircraft will also serve to carry doctors and paramedics to care for the astronauts. This will allow the SpaceX medical team to provide the best possible care to astronauts on the ship, in-flight, and get them safely to a hospital.

In a normal scenario, Crew Dragon will splash down off of Florida’s eastern coast. GO Searcher is equipped with a crane to lift the capsule out of the water and onto the main deck of the ship. NASA and SpaceX doctors will work together to evaluate the crew onboard the vessel. From there, GO Searcher will head for Cape Canaveral, Florida, where SpaceX teams will take the astronauts to a nearby airport for transport back to Houston.

NASA’s Commercial Crew Program is working with Boeing and SpaceX to begin launching astronauts from American soil for the first time since 2011. The goal of the program is safe, reliable and cost-effective transportation to and from the International Space Station from the United States. Commercial transportation to and from the space station will enable expanded station use, additional research time and broader opportunities of discovery aboard the orbiting laboratory.

Astronauts Practice Spacewalks Virtually

NASA’s Commercial Crew Program is working with Boeing and SpaceX to return human spaceflight launches to the United States in 2019. Williams is assigned to Boeing’s first operational mission after the company’s test flight with crew. Hopkins is assigned to SpaceX’s first operational mission after the company’s test flight with crew.

Rocket Segment Arrives in Florida

The ULA Atlas V Dual Engine Centaur for Boeing’s CST-100 Starliner Orbital Flight Test arrives at Cape Canaveral, Fla.

The dual-engine Centaur upper stage that will launch Boeing’s CST-100 Starliner spacecraft on its uncrewed Orbital Flight Test to the International Space Station has arrived at Cape Canaveral, Fla. for final processing by United Launch Alliance technicians.

The stage arrived Oct. 19 aboard the Mariner cargo ship, the ocean-going vessel that ULA uses to transport rocket stages from the manufacturing plant in Decatur, Alabama to the launch sites.

Wrapped in a protective covering for the transit, the Centaur was offloaded at the Port Canaveral wharf and driven on a specialized trailer to ULA’s Atlas Spaceflight Operations Center for initial arrival checks.

Later, it will move to the Delta Operations Center to be raised vertically, mounted onto the interstage structure and fitted with the adapter that will support Starliner atop the rocket. That combined stack will then be ready for mating to the Atlas V first stage at the Vertical Integration Facility early next year.