Boeing to Fly Second Uncrewed Orbital Flight Test for NASA

Boeing’s CST-100 Starliner lifted off Dec. 20, 2019 atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The spacecraft successfully landed two days later, completing an abbreviated uncrewed test for NASA’s Commercial Crew Program.

Boeing has decided to fly a second uncrewed flight test as a part of NASA’s Commercial Crew Program. Although no new launch date has been set, NASA has accepted the proposal to fly the mission again and will work side-by-side with Boeing to resume flight tests to the International Space Station on the company’s CST-100 Starliner system.

The agency’s Commercial Crew Program is a unique approach to human spaceflight in which NASA provides a set of mission and safety requirements and private companies, like Boeing and SpaceX, propose their own unique strategies to prove the systems meet the intent of the requirements. Consistent with that approach, Boeing had the responsibility to bring NASA its proposal on how to proceed with the flights.

An uncrewed flight test originally was proposed by Boeing to demonstrate the Starliner system could perform as designed to fly to the space station prior to having a crew onboard. With that proposal, the uncrewed flight became a part of the Commercial Crew Transportation Capability contract in 2014 between NASA and Boeing.

Although many of the objectives of Boeing’s first uncrewed flight test in December 2019 were accomplished, Boeing decided the best approach to meeting the agency’s requirements would be to fly the mission again, including docking with the space station. Data from the next and previous flight test will be used as part of NASA’s process of certifying Boeing’s crew transportation system for carrying astronauts to and from the space station.

If Boeing would have proposed a crewed mission as the next flight, NASA would have completed a detailed review and analysis of the proposal to determine the feasibility of the plan. However, as this was not the recommendation made by Boeing, NASA will not speculate on what the agency would have required.

The second uncrewed flight does not relieve Boeing from completing all the actions determined from the joint NASA/Boeing independent review team, which was commissioned following the flawed initial flight.  NASA still intends to conduct the needed oversight to make sure those corrective actions are taken.

NASA and Boeing are in the early stages of the decision to fly a second uncrewed orbital mission to the station, and a timeline for flying crew has not been determined.

Although completing a second uncrewed flight test was not in the timeline for returning U.S. human spaceflight on Starliner, NASA fully supports our Boeing partner’s commitment to flying astronauts as safely as possible.

This is exactly why NASA decided to select two partners in the commercial crew effort. Having dissimilar redundancy is key in NASA’s approach to maintaining a crew and cargo aboard the space station and to keeping our commitments to international partners. It also allows our private industry partners to focus on crew safety rather than schedule. The safety of our commercial crew team always will remain as our top priority.

NASA Update on SpaceX Parachute Testing

To date, SpaceX has completed 24 tests of its upgraded Mark 3 parachute design they are working to certify for use on the Crew Dragon spacecraft that will fly NASA astronauts to the International Space Station. The system was used during the SpaceX in-flight abort test in January.

On March 24, SpaceX lost a spacecraft-like device used to test the Crew Dragon Mark 3 parachute design. The test requires a helicopter to lift the device suspended underneath it to reach the needed test parameters. However, the pilot proactively dropped the device in an abundance of caution to protect the test crew as the test device became unstable underneath the helicopter. At the time of the release, the testing device was not armed, and a test of the parachute design was not performed.

Although losing a test device is never a desired outcome, NASA and SpaceX always will prioritize the safety of our teams over hardware. We are looking at the parachute testing plan now and all the data we already have to determine the next steps ahead of flying the upcoming Demo-2 flight test in the mid-to-late May timeframe.

NASA Shares Initial Findings from Boeing Starliner Orbital Flight Test Investigation

Boeing, NASA, and U.S. Army personnel work around the Boeing CST-100 Starliner spacecraft shortly after it landed in White Sands, New Mexico, Sunday, Dec. 22, 2019. Photo Credit: (NASA/Bill Ingalls)

Following the anomaly that occurred during the December Boeing Starliner Orbital Fight Test (OFT), NASA and Boeing formed a joint investigation team tasked with examining the primary issues, which occurred during that test. Those issues included three specific concerns revealed during flight:

  1. An error with the Mission Elapsed Timer (MET), which incorrectly polled time from the Atlas V booster nearly 11 hours prior to launch.
  2. A software issue within the Service Module (SM) Disposal Sequence, which incorrectly translated the SM disposal sequence into the SM Integrated Propulsion Controller (IPC).
  3. An Intermittent Space-to-Ground (S/G) forward link issue, which impeded the Flight Control team’s ability to command and control the vehicle.

The joint investigation team convened in early January and has now identified the direct causes and preliminary corrective actions for the first two anomalies. The intermittent communications issues still are under investigation. NASA reviewed these results on Friday, Jan. 31 along with multiple suggested corrective actions recommended by the team. While NASA was satisfied that the team had properly identified the technical root cause of the two anomalies, they requested the team to perform a more in-depth analysis as to why the anomalies occurred, including an analysis of whether the issues were indicative of weak internal software processes or failure in applying those processes. The team is in the process of performing this additional analysis, as well as continuing the investigation of the intermittent communications issues. NASA briefed the Aerospace Safety Advisory Panel on the status of the investigation this week.

Regarding the first two anomalies, the team found the two critical software defects were not detected ahead of flight despite multiple safeguards.  Ground intervention prevented loss of vehicle in both cases. Breakdowns in the design and code phase inserted the original defects. Additionally, breakdowns in the test and verification phase failed to identify the defects preflight despite their detectability. While both errors could have led to risk of spacecraft loss, the actions of the NASA-Boeing team were able to correct the issues and return the Starliner spacecraft safely to Earth.

There was no simple cause of the two software defects making it into flight. Software defects, particularly in complex spacecraft code, are not unexpected. However, there were numerous instances where the Boeing software quality processes either should have or could have uncovered the defects. Due to these breakdowns found in design, code and test of the software, they will require systemic corrective actions. The team has already identified a robust set of 11 top-priority corrective actions. More will be identified after the team completes its additional work.

The joint team made excellent progress for this stage of the investigation. However, it’s still too early for us to definitively share the root causes and full set of corrective actions needed for the Starliner system. We do expect to have those results at the end of February, as was our initial plan. We want to make sure we have a comprehensive understanding of what happened so that we can fully explain the root causes and better assess future work that will be needed. Most critically, we want to assure that these necessary steps are completely understood prior to determining the plan for future flights. Separate from the anomaly investigation, NASA also is still reviewing the data collected during the flight test to help determine that future plan. NASA expects a decision on this review to be complete in the next several weeks.

NASA and Boeing are committed to openly sharing the information related to the mission with the public. Thus, NASA will be holding a media teleconference at 3:30 p.m. EST Friday, Feb. 7.

In addition to these reviews, NASA is planning to perform an Organizational Safety Assessment of Boeing’s work related to the Commercial Crew Program. The comprehensive safety review will include individual employee interviews with a sampling from a cross section of personnel, including senior managers, mid-level management and supervision, and engineers and technicians at multiple sites. The review would be added to the company’s Commercial Crew Transportation Capability contract. NASA previously completed a more limited review of the company. The goal of the Organizational Safety Assessment will be to examine the workplace culture with the commercial crew provider ahead of a mission with astronauts.

Boeing’s Orbital Flight test launched on Friday, Dec. 20, on United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

Successful Static Tests Set Stage for Key In-Flight Abort Demonstration

SpaceX In-flight abort test
The uncrewed in-flight abort demonstration is targeted for 8 a.m. EST Saturday, Jan. 18, from Launch Complex 39A in Florida. There is a four-hour test window. Photo credit: SpaceX

NASA and SpaceX are preparing to launch the final, major test before astronauts fly aboard the Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. The test, known as in-flight abort, will demonstrate the spacecraft’s escape capabilities — showing that the crew system can protect astronauts even in the unlikely event of an emergency during launch. The uncrewed flight test is targeted for 8 a.m. EST Saturday, Jan. 18, at the start of a four-hour test window, from Launch Complex 39A in Florida.

SpaceX performed a full-duration static test Saturday, Jan. 11, of the Falcon 9 and completed a static fire of the Crew Dragon on Nov. 13, setting the stage for the critical flight test.

Prior to launch, SpaceX and NASA teams will practice launch day end-to-end operations with NASA astronauts, including final spacecraft inspections and side hatch closeout. Additionally, SpaceX and NASA flight controllers along with support teams will be staged as they will for future Crew Dragon missions, helping the integrated launch team gain additional experience beyond existing simulations and training events.

After liftoff, Falcon 9’s ascent will follow a trajectory that will mimic a Crew Dragon mission to the International Space Station matching the physical environments the rocket and spacecraft will encounter during a normal ascent.

Click here for the full story.

NASA Update on Boeing’s Orbital Flight Test

Boeing, NASA, and U.S. Army personnel work around the Boeing CST-100 Starliner spacecraft shortly after it landed in White Sands, New Mexico, Sunday, Dec. 22, 2019. Photo Credit: (NASA/Bill Ingalls)

NASA and Boeing are in the process of establishing a joint, independent investigation team to examine the primary issues associated with the company’s uncrewed Orbital Flight Test.

The independent team will inform NASA and Boeing on the root cause of the mission elapsed timer anomaly and any other software issues and provide corrective actions needed before flying crew to the International Space Station for the agency’s Commercial Crew Program. The team will review the primary anomalies experienced during the Dec. 2019 flight test, any potential contributing factors and provide recommendations to ensure a robust design for future missions. Once underway, the investigation is targeted to last about two months before the team delivers its final assessment.

In parallel, NASA is evaluating the data received during the mission to determine if another uncrewed demonstration is required. This decision is not expected for several weeks as teams take the necessary time for this review. NASA’s approach will be to determine if NASA and Boeing received enough data to validate the system’s overall performance, including launch, on-orbit operations, guidance, navigation and control, docking/undocking to the space station, reentry and landing. Although data from the uncrewed test is important for certification, it may not be the only way that Boeing is able to demonstrate its system’s full capabilities.

The uncrewed flight test was proposed by Boeing as a way to meet NASA’s mission and safety requirements for certification and as a way to validate that the system can protect astronauts in space before flying crew. The uncrewed mission, including docking to the space station, became a part of the company’s contract with NASA. Although docking was planned, it may not have to be accomplished prior to the crew demonstration. Boeing would need NASA’s approval to proceed with a flight test with astronauts onboard.

Starliner currently is being transported from the landing location near the U.S. Army’s White Sands Missile Range to the company’s Commercial Crew and Cargo Processing Facility in Florida. Since landing, teams have safed the spacecraft for transport, downloaded data from the spacecraft’s onboard systems for analysis and completed initial inspections of the interior and exterior of Starliner. A more detailed analysis will be conducted after the spacecraft arrives at its processing facility.

Boeing’s Orbital Flight test launched on Friday, Dec. 20, on United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

Boeing’s Starliner Separates from Atlas V Centaur

Boeing’s CST-100 Starliner has separated from the Atlas V Centaur and is flying on its own, embarking on its inaugural flight to the International Space Station. The Atlas Centaur will fall back to Earth and impact the ocean near Australia. After a series of orbital adjustments, Starliner will be on course for rendezvous and docking with the space station at 5 a.m. on Saturday, Dec. 21.