SpaceX Demo-2 Astronauts Walkthrough Launch Day Operations

SpaceX recently held a training event at its facility in Hawthorne, California for prelaunch operations with NASA astronauts Bob Behnken and Doug Hurley and ground operators for the company’s Demo-2 mission to the International Space Station as part of NASA’s Commercial Crew Program. The training provided an opportunity for the integrated team to dry run all of the activities, procedures and communication that will be exercised on launch day when a Crew Dragon spacecraft launches on a Falcon 9 rocket from Launch Complex 39A in Florida.

The astronauts performed suit-up procedures alongside the SpaceX ground closeout team and suit engineers using the same ground support equipment, such as the seats and suit leak check boxes, that will be used on launch day. Following crew suit-up, the teams performed a simulated launch countdown with the astronauts inside a Crew Dragon simulator and performed several emergency egress, or exit, scenarios.

The training exercise is one of several that NASA astronauts have participated in with our commercial crew partners, Boeing and SpaceX, in preparation for crew flight tests. NASA’s Commercial Crew Program continues to place astronaut safety at the forefront of preparations for human spaceflight.

 

 

 

Flight Test Dates Under Review

SpaceX's Crew Dragon and Boeing's Starliner will transport astronauts to the International Space Station.

NASA’s Commercial Crew Program and private industry partners, Boeing and SpaceX, are working to return human spaceflight launches to the International Space Station from U.S. soil on American rockets and spacecraft.

NASA and our partners want to fly astronauts as quickly as we can without compromising the safety of our astronauts and always will give safety precedence over schedule. However, our schedules matter. The NASA Administrator has directed all programs in the Human Exploration and Operations Directorate to reexamine flight dates once new leadership is in place to deliver realistic schedule plans.

This is a pivotal time for NASA and our partners. The final phase of our development and testing is critical to the safety of our astronauts and the success of our mission – regular, reliable and cost-effective human transportation to and from the International Space Station on commercially-owned and operated American space systems.

We are testing, learning and incorporating changes to improve the design and operation of these next-generation human space transportation systems. As a result, our providers have improved the safety of these systems, and the effect of these changes have impacted schedules.

NASA, SpaceX Earn Emmy Nomination for Demo-1 Mission Coverage

NASA and SpaceX were nominated for an Emmy! Teams from the agency’s Commercial Crew Program are among six finalists in the Outstanding Interactive Program category for their coverage of SpaceX’s Demo-1 mission in March 2019.

The nomination recognizes the teams’ tremendous efforts in sharing with the world Crew Dragon’s historic journey to the International Space Station. The mission marked the first time a commercially operated spacecraft docked with the space station, and brought the United States a critical step closer to launching astronauts in American spacecraft on American rockets from American soil.

The uncrewed SpaceX Crew Dragon spacecraft s pictured with its nose cone open revealing its docking mechanism while approaching the International Space Station's Harmony module on March 3, 2019.
The uncrewed SpaceX Crew Dragon spacecraft is pictured with its nose cone open revealing its docking mechanism while approaching the International Space Station’s Harmony module on March 3, 2019. Image credit: NASA

NASA and SpaceX spent years preparing a collaborative approach to mission coverage, which featured multiple live broadcasts from agency and company facilities across the country during each phase of the mission, continuing through Crew Dragon’s stunning return to Earth. Throughout NASA’s coverage, the agency engaged social media users around the world and at local social media influencer gatherings at the agency’s Kennedy Space Center in Florida.

The Emmy Awards ceremony will be held Sunday, Sept. 22, 2019.

SpaceX Provides Update on Crew Dragon Static Fire Investigation

SpaceX held a joint teleconference with NASA on Monday, July 15, to update media on the company’s investigation into its Crew Dragon static fire mishap on Saturday, April 20. SpaceX’s full statement on the investigation and the current findings can be found at: https://go.nasa.gov/2GeGLyH

 

SpaceX’s Cargo Dragon to Deliver New Space Station Docking Adapter for Commercial Crew Spacecraft

The International Docking Adapter 3, a critical component for future crewed missions to the International Space Station, is carefully packed away in the unpressurized "trunk" section of the SpaceX Dragon spacecraft at the SpaceX facility on Cape Canaveral Air Force Station in Florida on June 19.
The International Docking Adapter 3, a critical component for future crewed missions to the International Space Station, is carefully packed away in the unpressurized “trunk” section of the SpaceX Dragon spacecraft at the SpaceX facility on Cape Canaveral Air Force Station in Florida on June 19. Photo credit: NASA/Isaac Watson

A new International Docking Adapter, called IDA-3, is scheduled to arrive at the International Space Station this July aboard SpaceX’s 18th cargo resupply mission to the microgravity laboratory. When installed on the space station, the one-of-a-kind outpost will have two common ports enabling expanded opportunities for visiting vehicles, including new spacecraft designed to carry humans for NASA’s Commercial Crew Program.

The docking adapters are the physical connections spacecraft like Boeing’s CST-100 Starliner, SpaceX’s Crew Dragon and future, yet-to-be designed international spacecraft will use to autonomously attach to station. The adapters are important because the plans are readily available for spacecraft builders and standardize a host of docking requirements.

The International Docking Adapter 3, a critical component for future crewed missions to the International Space Station, is carefully packed away in the unpressurized “trunk” section of the SpaceX Dragon spacecraft at the SpaceX facility on Cape Canaveral Air Force Station in Florida on June 19.
The International Docking Adapter 3, a critical component for future crewed missions to the International Space Station, is carefully packed away in the unpressurized “trunk” section of the SpaceX Dragon spacecraft at the SpaceX facility on Cape Canaveral Air Force Station in Florida on June 19. Photo credit: NASA/Cory Huston

Currently stowed in the trunk of SpaceX’s Dragon cargo spacecraft, the IDA-3 was assembled at NASA’s Kennedy Space Center in Florida, and comprises of a number of sensors that spacecraft will communicate with and connect to through use of onboard computers and navigation systems.  Docking requires no crew assistance and can be completed much more quickly than the berthing process often used for cargo spacecraft today, which may involve astronauts aboard the station manually capturing spacecraft using a robotic arm then maneuvering the craft to attach to a common hatch mechanism.

IDA-3 is one of the primary payloads on the SpaceX resupply mission and is identical to the International Docking Adapter-2, IDA-2, installed in the summer of 2016. IDA-2 was used by SpaceX during the company’s first uncrewed flight test, called Demo-1, for commercial crew. Both docking adapters were built by Boeing.

Once at the space station, flight controllers will use the station’s Canadarm2 robotic arm to remove the IDA-3 from Dragon’s trunk and place it over a Pressurized Mating Adapter (PMA-3) on the station’s Harmony module, or Node 2. Later this summer, two Expedition 60 crew members will perform a spacewalk to permanently install the IDA-3 to PMA-3.

The SpaceX CRS-18 mission is scheduled to launch at 7:35 p.m. EDT on Sunday, July 21, from Space Launch Complex 40 at Cape Canaveral Air Force Station. After its arrival, the Dragon cargo spacecraft will remain at the space station for about a month.

Crew Safety A Top Priority

NASA and the Department of Defense Human Space Flight Support (HSFS) Office Rescue Division conducted a crew rescue training event April 25 and 27, 2019, in the Atlantic Ocean off the coast of Cape Canaveral Air Force Station, Florida in support of NASA’s Commercial Crew Program.

For our commercial crew flights, we plan for any scenario that may arise, including unlikely emergencies, such as a spacecraft abort and subsequent splashdown in the Atlantic Ocean. Recently, two NASA astronauts as well as a team from the Department of Defense Human Space Flight Support Office Rescue Division practiced what they will do in that very scenario. The DoD team is responsible for quickly and safely rescuing astronauts in the unlikely event of an emergency during ascent, free flight or landing. To learn more about both team’s practices, check out our crew rescue feature.

 

NASA’s Commercial Crew, DoD Teams Conduct Crew Rescue Exercise

Rescue team members stand on the stabilization collar attached to the Boeing CST-100 Starliner training capsule, known as Boiler Plate 3, during a search and rescue training exercise April 16, 2019.
Rescue team members stand on the stabilization collar attached to the Boeing CST-100 Starliner training capsule, known as Boiler Plate 3, during a search and rescue training exercise April 16, 2019. The exercise will be conducted over the next several days at the Army Wharf at Cape Canaveral Air Force Station and in the Atlantic Ocean. Photo credit: NASA/Kim Shiflett

NASA and the Department of Defense Human Space Flight Support (HSFS) Office Rescue Division are conducting a search and rescue training exercise over the next several days at the Army Warf on Cape Canaveral Air Force Station and in the Atlantic Ocean. This is the first at-sea exercise with the Boeing CST-100 Starliner training capsule, known as Boiler Plate 3, ahead of the commercial crew flight test with astronauts targeted for later this year.

The HSFS teams have supported all NASA human spaceflight programs and will be on standby for both NASA’s Commercial Crew Program and Orion launches and landings. The team is responsible for quickly and safely rescuing astronauts in the unlikely event of an emergency during ascent, free flight or landing. This multi-day exercise consists of ground- and water- based training to prepare the DoD pararescue team for an emergency situation on ascent. The HSFS teams will rehearse locating the Starliner spacecraft, sending out rescue teams to extract DoD team members, acting as astronauts, from the capsule and providing immediate medical treatment.  The HSFS team will arrange for pickup, transport and follow-on medical care.

At the conclusion of this exercise, HSFS will complete a full mission profile to validate best practices for configuring and air-dropping U.S. Air Force Pararescue team members from a C-17 aircraft with their associated watercraft, specialized rescue equipment and advanced medical capabilities. HSFS conducted a similar exercise with SpaceX’s Crew Dragon spacecraft in early December 2018.

This simulation is another example of how safety is being built into systems, processes and procedures for commercial crew missions. It is standard practice to conduct these exercises, and was regularly done during the Space Shuttle Program.

During normal return scenarios, Boeing’s Starliner will land on land in a safe zone of about 15 square miles in the Western United States. Throughout the commercial crew development phases with NASA, Boeing has performed dozens of qualification tests on its parachute and airbag systems simulating conditions on land and in the water.

NASA’s Commercial Crew Program: Boeing Test Flight Dates and SpaceX Demo-2 Update

Illustration of Boeing CST-100 Starliner and SpaceX Crew Dragon in Earth orbit, along with International Space Station and Moon*NASA, Boeing and SpaceX provided an update on July 30, 2019. For the details on the flight tests and the latest schedule, visit https://go.nasa.gov/2YqiJHi.

NASA and Boeing are nearing the final stages of development and evaluation for crew systems that will return human spaceflight launches from American soil on missions to the International Space Station as part of the agency’s Commercial Crew Program. To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station.

Boeing now is targeting the company’s uncrewed mission, called Orbital Flight Test, in August 2019, although this is a working target date and to be confirmed. The CST-100 Starliner will launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The decision to adjust the launch date was guided by limited launch opportunities in April and May, as well as a critical U.S. Air Force national security launch – AEHF-5 – atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 in June.

Following the uncrewed flight, Boeing is planning to fly a test mission with crew on board to the space station in late 2019, with the specific date to be confirmed closer to that timeframe. NASA and Boeing have agreed to extend the duration of that flight test to the International Space Station after completing an in-depth technical assessment of the Starliner systems. Boeing also will fly a Pad Abort Test before those two orbital flights to demonstrate the company’s ability to safely carry astronauts away from a launch vehicle emergency, if necessary. Find a full mission and Boeing progress feature here: https://go.nasa.gov/2FM8zcQ.

Following the test flights, NASA will review performance data and resolve any necessary issues to certify the systems for operational missions. NASA and Boeing are actively working to be ready for the operational missions. As with all human spaceflight vehicle development, learning from each test and adjusting as necessary to reduce risk to the crew may override planning dates.

The following planning dates reflect updated schedule inputs for Boeing’s test flights as of March 26, 2019.

Test Flight Planning Dates:
Boeing Pad Abort Test: Summer 2019
Boeing Orbital Flight Test (uncrewed): current target working date August 2019
Boeing Crew Flight Test (crewed): current target working date late 2019

SpaceX Demo-2 Update

NASA also is working with SpaceX to return human spaceflight launches to American soil. The company completed an uncrewed flight test, known as Demo-1, to the space station in March.

NASA’s Commercial Crew Program and SpaceX are reevaluating target test dates.

Demo-1 Post-Splashdown Remarks from Steve Stich

NASA’s Commercial Crew Program Deputy Manager Steve Stich

The following is a transcript of NASA’s Commercial Crew Program Deputy Manager Steve Stich’s comments during the NASA TV broadcast following Crew Dragon splashdown on Friday, March 8:

It’s great to be here representing the Commercial Crew Program. What an outstanding day to be part of our program. We started our contracts in 2014 for these first missions, and to sit here today and talk about Demo-1 and how great the flight went and what we’re going to learn from it is just amazing.

I’d like to congratulate the SpaceX team on a phenomenal job getting the vehicles ready and executing the flight, and our whole NASA team that worked the mission. If you just think about the enormity of what happened in this flight and all of the prep that went into it—getting the pad refurbished at (Launch Complex) 39A, getting the flight control room set up, getting the vehicles built, getting the Falcon 9 ready, all of the analysis, all of the mission support that went into it, the simulations and the practice leading up to this flight over the last year or so—it’s just been a tremendous job.

I would say one of the things that we learned during this flight is the great relationship we have between the program and SpaceX. I would say our teams worked seamlessly back and forth with SpaceX, not only in the lead-up to the flight but in how we managed the flight through the Dragon mission management team, and then also working with Kenny Todd and the International Space Station Program. The space station program did a phenomenal job supporting our program while we were docked to station, on the way to station, and the international partnership as well, so it was a really great opportunity for this mission.

The last 24 hours have been exciting for us. You know we closed the hatch yesterday around noon (Central Time), got into the undock today around 1:31 a.m. (Central Time), did a few small separation burns to get away from station—if you watched that on NASA TV that was flawless—did about three separation burns to get down below station, executed the deorbit burn at about 6:52 a.m. Central Time and then landed just a few minutes ago at 7:45 a.m. (Central Time).

The vehicle is doing well. The recovery crews are out on the scene. They’ve already been around the spacecraft and made sure it was secure for personnel. It was a very calm day with low winds and low sea states, and one of the chutes kind of landed on the Dragon capsule; they’ve already gotten that off, so that’s going really well.  It’ll probably take 30 minutes to maybe an hour to get it back on the ship.

When you look overall at this mission, it was a great dress rehearsal for Demo-2. We learned a phenomenal amount in the prelaunch timeframe about how to load the vehicle, and thinking forward to how we’ll put the crews in the vehicle. The ascent profile for this flight, we practiced the exact profile that Mike Hopkins and others will fly very soon—Doug Hurley and Bob Behnken (on Demo-2). We had the abort system—the crew escape system on Dragon—actually enabled for this flight, and we were able to see how that worked and we’ll get the data back and look at those triggers and how it performed.

On-orbit we got a lot of great data on the vehicle in terms of the thermal performance and power performance; the vehicle really did better than we expected. Then the rendezvous was phenomenal as we came in and checked out those sensors. During the attached phase of course we had cargo operations, and we’ll do the same thing both on Demo-2 and then Crew Dragon-1 and other missions. Then we did a robotic survey of the vehicle to look at the thermal protection system and other systems, and that went really well.

I will say one thing: this mission, it was only six days long. It was a sprint from start to finish, and thinking about where we’ve been in operations in that sprint, I think Kenny (Todd) would probably tell you the same thing—it was just a phenomenal job by the team. And then of course today, the undocking, watching how those systems performed, that went flawlessly. It’s a very tight sequence between undocking and de-orbit burn, how the nose cone performed, how the de-orbit burn was executed, then the entry was phenomenal.

We did have Ripley on board, an anthropomorphic test device, and that’s going to give us a lot of important data for the accelerations during both the ascent phase and then the entry phase under the parachutes and then landing. So we’ll collect that data, and then look at that.

Over the next few weeks, we’ll be doing post-flight reviews. In fact just next week we’ll have one for the launch vehicle and the ground segment at Kennedy Space Center (KSC), we’ll start reviewing that. And then subsequently we’ll do reviews with SpaceX on the orbit phase of the mission.

This flight really sets us up well for the rest of the year. The vehicle that’s hit the water in the Atlantic today will be the in-flight abort vehicle, and so one of the first things that’ll happen is the vehicle will come back to KSC and go over into the processing area and start getting refurbished for the in-flight abort test which should be in the June timeframe. And then the Demo-2 vehicle is in Hawthorne, CA getting ready for the first crewed mission. That’s in progress and going well. That work has continued all through the flight, so it will be a busy year for us with SpaceX with in-flight abort in the June timeframe and then Demo-2 later in the year with the first crewed mission.

I don’t think we saw really anything in the mission so far—and we’ve got to do to the data reviews—that would preclude us from having the crewed mission later this year.

If you look in the April timeframe we’re also getting ready for the Orbital Flight Test for Boeing, and that will happen very soon. So our program will transition after this mission and the data reviews into preparing not only for in-flight abort and Demo-2, but also the Orbital Flight Test—the uncrewed flight test—for Boeing, and that’ll be coming up in the April timeframe. Spacecraft 3, which is the Boeing vehicle, is coming together at the Commercial Crew and Cargo Processing Facility down in Florida. And (Boeing) is in the middle of a bunch of very critical testing right now out at El Segundo (California) to verify that the spacecraft can work successfully in space. And then later on this year we’ll have the Crew Flight Test for Boeing as well.

If you just look at all the activities in commercial crew, it’s a super busy time. In addition to this flight, in the last few weeks we did parachute tests for SpaceX and Boeing and so if you look at all of the activities to get ready for flying our crews, it’s just a very exciting time.

Again, congratulations to our SpaceX team and all of the NASA people across the country that worked so hard for many, many years on this flight. It really sets us up for the rest of the year, and it’s a super exciting time to be in commercial crew.

Crew Dragon Lifted Onto Recovery Ship

SpaceX's Crew Dragon spacecraft is safely aboard the company's recovery vessel, Go Searcher, following splashdown at 8:45 a.m. EST on Friday, March 8, 2019.
SpaceX’s Crew Dragon spacecraft is safely aboard the company’s recovery vessel, Go Searcher, following splashdown at 8:45 a.m. EST on Friday, March 8, 2019. Image credit: NASA TV

About 200 miles off Florida’s east coast, SpaceX teams have recovered the company’s Crew Dragon spacecraft from the Atlantic Ocean and lifted it aboard SpaceX’s primary recovery ship, Go Searcher. The spacecraft splashed down at 8:45 a.m. EST, wrapping up the Demo-1 flight test that began one week ago today with liftoff aboard a Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Demo-1 is the first flight test of a space system designed for humans built and operated by a commercial company through a public-private partnership. The mission also marks a significant step toward returning to the nation the capability to launch astronauts on a U.S.-built spacecraft from U.S. soil.