Spacewalkers Complete HD Camera Installation

Expedition 56 Commander Drew Feustel and Flight Engineer Ricky Arnold of NASA completed the sixth spacewalk at the International Space Station this year at 2:55 p.m. EDT, lasting 6 hours, 49 minutes. The two astronauts installed new high-definition cameras that will provide enhanced views during the final phase of approach and docking of the SpaceX Crew Dragon and Boeing Starliner commercial crew spacecraft that will soon begin launching from American soil.

They also swapped a camera assembly on the starboard truss of the station, closed an aperture door on an external environmental imaging experiment outside the Japanese Kibo module, and completed two additional tasks to relocate a grapple bar to aid future spacewalkers and secured some gear associated with a spare cooling unit housed on the station’s truss.

Commercial Crew Astronauts Survey Launch Pad Progress

Commercial Crew Program astronauts visit Launch Complex 39A at Kennedy Space Center in Florida.

Commercial Crew Program astronauts (left to right) Suni Williams, Eric Boe, Bob Behnken and Doug Hurley visited Launch Complex 39A at NASA’s Kennedy Space Center (KSC) March 27. The astronauts toured the pad for an up-close look at preparations in work for the SpaceX Crew Dragon flight tests. The tower modifications, including the recent removal of the rotating service structure, are proof of progress in outfitting the pad for crew once again. Future integration of the crew access arm will allow for safe crew entry and exit from the spacecraft for launch and in the unlikely event of a pad abort scenario.

Commercial Crew Program astronauts outside SpaceX’s processing hangar.

During their visit to KSC, the astronauts also stopped outside SpaceX’s processing hangar, adjacent to the launch pad and talked directly with SpaceX employees about their excitement as the program builds momentum. SpaceX and Boeing are working toward returning human space flight launches to the U.S. with flight tests targeted later this year.

Commercial Crew Program Simulates Astronaut Rescue Missions

A C-17 Globemaster aircraft from the Alaska Air National Guard’s 249th Airlift Squadron flies overhead as pararescue specialists from the 304th Rescue Squadron, located in Portland, Oregon complete an astronaut rescue training exercise inside a covered life raft on the Atlantic Ocean. The pararescue specialists, supporting the 45th Operations Group’s Detachment 3, based out of Patrick Air Force Base, conducted the exercise in April with NASA’s Commercial Crew Program and SpaceX off of Florida’s eastern coast. The specially designed 20-person life raft is equipped with enough food, water and medical supplies to sustain both rescuers and crew for up to three days, if necessary.

As NASA, Boeing and SpaceX prepare for commercial human spaceflight launches, they are training for a variety of contingencies, including emergency water landings. NASA’s Commercial Crew Program Landing and Recovery Team is leading a multi-agency operation to practice astronaut rescue missions.

Rescue and recovery involves meticulous planning and close coordination between NASA, the Department of Defense (DOD), and company recovery teams for Starliner and Crew Dragon. These are the spacecraft of Boeing and SpaceX that will fly astronauts to and from the International Space Station from U.S. soil. In the event of a variety of contingency landings, an elite team of pararescue specialists is prepared to rescue the crew anywhere in the world.

For more details, visit: https://www.nasa.gov/feature/rescue-operations-take-shape-for-commercial-crew-program-astronauts

Young Engineer Shapes Commercial Human Spaceflight Policy

Kathleen O’Brady is a certification systems engineer at NASA’s Kennedy Space Center in Florida.

Kathleen O’Brady’s five-year-old son can name all of the planets in our solar system and even some nearby stars. Perhaps the brightest star he knows though is his mom. She is helping shape policy in the new era of commercial human spaceflight.

O’Brady plays a key role in NASA’s Commercial Crew Program (CCP), which has partnered with Boeing and SpaceX to develop spacecraft to fly NASA astronauts to the International Space Station, and return them safely home. NASA is in the process of certifying two new crew transportation systems—Boeing’s Starliner and SpaceX’s Crew Dragon—at the same time. As a certification systems engineer in the program’s Systems Engineering and Integration Office at NASA’s Kennedy Space Center in Florida, O’Brady was responsible for defining an integrated plan for certification which is being executed by both providers.

“I honestly loved it,” O’Brady said. “It’s like putting a puzzle together. Half the problem is trying to make sure you understand what all the pieces are, and then you start slowly integrating those pieces.”

Boeing and SpaceX are targeting test flights with crew on board for late this year. “We all have to do the job right,” O’Brady said. “We have a duty to return our astronauts to flight. We’re going to use these private companies and they’re going to do a fantastic job.”

Astronaut Perspective

After completion of uncrewed and crew test flights of Boeing’s CST-100 Starliner and SpaceX’s Crew Dragon, NASA will review the data to ensure the vehicles meet the agency safety and performance requirements, as part of final certification efforts.

With test flights scheduled later this year, Boeing and SpaceX are working closely with the astronaut team to ensure crew safety and serviceability in their respective capsules.

Here’s more about what the commercial crew astronaut test pilots are looking forward to in the upcoming year:

 

Bob Behnken

Behnken, a NASA astronaut since 2000, flew on space shuttle missions STS-123 and STS-130 accumulating more than 29 days in space.

Eric Boe

Boe, a NASA astronaut since 2000, flew on STS-126 and STS-133 and has logged more than 6,000 hours of flight training and 28 days in space. He is most excited about seeing the hardware.

Doug Hurley

Hurley, a NASA astronaut since 2000, flew on STS-127 and the final Shuttle flight, STS-135, totaling more than 28 days in space. Hurley is most excited about seeing all the spacecraft hardware coming together.

Suni Williams

Williams, a NASA astronaut since 1998, flew to the space station on STS-116 as a member of Expeditions 14-15, returning on STS-117. Her second long-duration mission began aboard a Russian Soyuz for Expeditions 32-33. Cumulatively, she is approaching a year in space with more than 322 days in space.

Beyond the flight tests and launches, Williams is excited about the manufacturing underway.

“One of the coolest things is there’s hardware undergoing testing. This is a pretty exciting time. It’s like all the pieces and parts of the puzzle are coming together.”

Mixed Reality Technology Helps NASA Astronauts Prepare for Starliner Returns from the Space Station

NASA’s Commercial Crew Program astronauts, wearing spacesuits and augmented reality headsets, rehearse returning to Earth from the International Space Station during recent testing at Boeing’s Extended Reality Laboratory in Philadelphia. The astronauts are seated upside down so they can practice releasing their seat harness and moving to the side hatch of the Starliner without assistance. The astronauts wearing the mixed reality gear see a digital version of the interior of the Starliner as it would look in the real-life scenario while interacting with the environment around them. Photo credit: Boeing

NASA’s Commercial Crew Program astronauts training to fly test missions to and from the International Space Station are practicing returning to Earth from the microgravity laboratory. Recent testing at Boeing’s Extended Reality Laboratory in Philadelphia combines mixed reality simulations with astronauts wearing spacesuits and augmented reality headsets, and secured in mock-up Starliner seats – the spacecraft being developed by Boeing. The testing allows astronauts to perform an exit from their seats in uncommon landing conditions. The astronauts are seated upside down so they can practice releasing their seat harness and moving to the side hatch of the Starliner without assistance. The astronauts wearing the mixed reality gear see a digital version of the interior of the Starliner as it would look in the real-life scenario while interacting with the environment around them.

In total, 30 practice runs were completed, some to familiarize the crew with the exit procedures and some additional timed runs. The Starliner is designed to land in the Western United States under parachutes and touch down on airbags located on the bottom of the spacecraft.  In the event that the capsule does not land upright, testing in extreme conditions helps prepare astronauts for any situation, including an inverted position.

Boeing already has completed a series of parachute drop tests and full-scale landing qualification tests to understand a wide range of spacecraft conditions when returning to earth. The company also has used test dummies in stand-alone seat tests and incorporated the dummies into landing drop tests to understand impacts to crew members.

Both Boeing and SpaceX have been working with the astronauts training to fly the test missions to the International Space Station. The two commercial providers have been developing unique systems to meet the goal of returning crew launches to the United States. Boeing’s Starliner will launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station. SpaceX is developing the Crew Dragon, or Dragon 2, spacecraft to launch on the company’s Falcon 9 rocket from Launch Complex 39A. Both companies will begin their journeys from Florida’s Space Coast. Boeing plans to return on land, while SpaceX will splash down in the Atlantic Ocean. Recent SpaceX testing for return to Earth has included rescue and recovery training in the Atlantic with spacesuit-clad astronauts and personnel who will assist upon return to Earth.

Commercial Crew Program 2017 Year in Review

In this composite image, at left, an astronaut wears the SpaceX spacesuit design. At right, an astronaut wears the Boeing spacesuit design.
Left: SpaceX unveiled the first look at its new spacesuit design that astronauts flying to and from the International Space Station will wear inside the Crew Dragon spacecraft. Right: Boeing unveiled the company’s new, blue spacesuit astronauts will wear while aboard the Starliner spacecraft to and from the International Space Station.

NASA’s Commercial Crew Program and commercial partners, Boeing and SpaceX, made significant strides in 2017 to return human spaceflight to the United States. Each company continued to develop and test unique space systems to fly astronauts for the agency to and from the International Space Station. Both companies are targeting flight tests in 2018.

Here’s the 2017 year in review:

Crew Rotation Missions Secured
NASA’s Commercial Crew Program started the year by securing an additional four crew rotation missions from Boeing and SpaceX. The missions will carry astronauts to and from the International Space Station through 2024. The four additional missions fall under the Commercial Crew Transportation Capability contracts and bring the total number of crew rotation missions awarded to each provider to six. The missions will fly following NASA certification.

To meet NASA’s requirements, the commercial providers must demonstrate that their systems are ready to begin regular flights to the space station. Two of those demonstrations are uncrewed flight tests, known as Orbital Flight Test for Boeing, and Demonstration Mission 1 for SpaceX. After the uncrewed flight tests, each company will carry out a flight test with crew prior to being certified by NASA for crew rotation missions.

The Crew
NASA’s four astronauts training to fly the test flights on Boeing’s Starliner and SpaceX’s Crew Dragon spent time evaluating both providers’ progress during 2017. The astronauts are learning about the systems, being fitted for spacesuits and readying for flight tests to and from the International Space Station.

The International Space Station
The International Space Station continued to prepare for the new commercial spacecraft to arrive. During Orbital ATK’s resupply mission to the space station in November, the cargo spacecraft maneuvered above the Harmony module prior to its release. There, it gathered data relevant to future rendezvous and docking operations for U.S. commercial crew vehicles that will be arriving for a linkup to Harmony’s international docking adapters. Other work included the space station crew installing and performing check-outs of a control panel on Harmony for the docking adapter.

Check out more progress – the full feature here:
https://www.nasa.gov/specials/CCP2017/

Commercial Crew Program Completes Year of Transition

2016YIR-CCP

The past year marked a substantial transition for NASA’s Commercial Crew Program and its partners as they moved from design of critical elements and systems in previous years to the manufacturing of the spacecraft and launch vehicles. Working on independent spacecraft and launch systems, Boeing and SpaceX made substantial modifications to launch complexes in Florida and performed the first integrated simulations of the teams that will oversee the flights. Along the way, advances were overseen by NASA engineers and the astronauts who will fly the spacecraft into orbit for the flight tests. Read about the dynamic 2016 achievements here.

NASA, Industry Team Up to Innovate Human Spaceflight

CCP-1275x1650NASA’s Commercial Crew Program set out from its beginning to provide a setting that would combine the expertise of NASA’s 50 years of human spaceflight experience with the aerospace industry’s know-how in manufacturing to produce cutting-edge spacecraft to take astronauts into low-Earth orbit. The payoff has been a level of innovation in numerous areas of spacecraft development and operation.

“From the outset we received very creative ideas and original approaches to development of individual systems along with new processes used to build several spacecraft in rapid succession,” said Kathy Lueders, manager of NASA’s Commercial Crew Program. “The companies painted for us an exciting picture of innovation and we’ve worked together to first refine our requirements and now to ensure that they are met as the crewed vehicles are taking shape.” Read more: http://go.nasa.gov/2fsl2IE

 

ICYMI: President Touts Advances in Commercial Crew Spacecraft

Obama-SerenaCCP-stitchIn case you missed it, President Barack Obama talked Thursday, Oct. 13, with the two companies developing the next generation of American spacecraft designed to take NASA astronauts into orbit and to the International Space Station.

Touring exhibits by Boeing and SpaceX during the Frontiers Conference at Carnegie Mellon University and University of Pittsburgh in Pittsburgh, Obama discussed the immediate future of space exploration and touted the advances made in the public-private partnerships between the companies and NASA’s Commercial Crew Program. Because the new spacecraft will enable a larger space station crew and more research time in space, they are seen as critical avenues to help scientists and astronauts explore the best methods to send crews into deep space and eventually to Mars.

The goal is “to lead humanity farther out into the final frontier of space,” the president said. “Not just to visit, but to stay.”

Obama even took the controls of a simulator designed to mimic the flight of Boeing’s CST-100 Starliner spacecraft. He conducted a Starliner docking maneuver similar to the one astronauts will actually fly in the future during crew rotation missions to the orbiting laboratory.

“Your ride is here,” Obama said after completing the exercise.

“I’m not sure who had more fun today – the president or me,” said NASA astronaut Serena Aunon-Chancellor, who helped demonstrate how the simulator worked. “He was a natural docking the Starliner to the space station!”

The president also inspected SpaceX’s Crew Dragon design up-close and talked at length with Aunon-Chancellor and a company official.

“You almost want to get in and take off, don’t you?” the president said.

“While visiting Dragon, we discussed the future of human spaceflight and how important it is to safely and reliably get our crew to the station in low-Earth orbit so NASA can focus on human exploration in deep space,” Aunon-Chancellor said. “We’re excited about the progress our partners are making and look forward to flying with them soon.” Photo credit: Michael Henninger/ Pittsburgh Post-Gazette