Boeing to Move Up Service Modules for Commercial Crew Flight Tests

On July 29, 2021, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida.
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft and the United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility to the launch pad at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida. Starliner will launch on the Atlas V for Boeing’s second uncrewed Orbital Flight Test (OFT-2) for NASA’s Commercial Crew Program. Photo credit: NASA/Kim Shiflett

Following extensive testing and analysis of oxidizer isolation valves on Boeing’s CST-100 Starliner service module propulsion system, Boeing has decided to move up service modules currently in production for its upcoming uncrewed and crewed flight tests to the International Space Station as part of NASA’s Commercial Crew Program.

The service module originally planned for its Crew Flight Test (CFT) will now be used for the Orbital Flight Test-2 (OFT-2) mission, and the service module planned for the Starliner-1 flight will be used for CFT.

“NASA has been working side-by-side with Boeing on the service module valve investigation, including leveraging the agency’s materials and propellants expertise to better characterize the potential causes of the issue,” said Steve Stich, manager, NASA’s Commercial Crew Program. “Because of the combined work, we have a much better understanding of the contributors that led to the valve issues, and ways to prevent it from happening in the future. Boeing remains diligent and driven by the data during its decision making, which is key to ensuring the Starliner system is ready when we fly our test missions in 2022.”

Ongoing investigation efforts continue to validate the most probable cause to be related to oxidizer and moisture interactions. NASA and Boeing will continue the analysis and testing of the initial service module on which the issue was identified leading up to launch of the uncrewed OFT-2 mission in August 2021.

“Our objective was to get back to flight safely and as soon as possible. With this objective in mind, we set out on parallel paths: remediating valves to preserve the option of utilizing the existing service module (SM2), while also working to accelerate the build of the next service module (SM4),” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program. “Based on the results to date we’ve decided to fly SM4 next and continue longer term tests with SM2 hardware, on the vehicle and in offline facilities.”

Teams conducted extensive analysis on the valves in Boeing’s Commercial Crew and Cargo Processing Facility, NASA’s Marshall Space Flight Center and outside laboratories. That analysis included testing samples of the corrosion, using specialized micro CT scans and borescopes to see inside the valves, exposing parts of valves to various conditions, and removing and disassembling several valves.

“I am incredibly proud of the entire NASA and Boeing team for their creativity and technical excellence while working this investigation,” Stich said.

Testing is continuing at NASA’s White Sands Test Facility to expose the valves to conditions similar to those that the spacecraft experienced inside the factory and at the Atlas V launch pad and Vertical Integration Facility prior to the last launch attempt.

Testing has already taken place on the former CFT, now OFT-2, service module to ensure the health of the hardware. The team will also apply preventative remediation efforts to this service module to prevent similar issues from occurring. The team is now working through next steps for removing and replacing the service module.

“The members of the combined team are consummate professionals, who continue to safely and systematically troubleshoot and safe the wet propellant system,” said Vollmer. “I’m very proud of their resolve.”

NASA, Boeing, United Launch Alliance and the Eastern Range continue to assess potential launch windows for OFT-2. As part of the standard process for requesting a launch slot on ULA’s manifest in the first half of 2022, Boeing has agreed to an open window in May, pending spacecraft readiness and space station availability. Potential launch windows for CFT are under review.

More details about the mission and NASA’s commercial crew program can be found by following the commercial crew blog@commercial_crew and commercial crew on Facebook.

NASA, Boeing Update Starliner Orbital Flight Test-2 Status

The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021.
The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021. Part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing

Editor’s note: This blog was updated Oct. 8 to reflect that the team is working toward launch opportunities in the first half of 2022 for Orbital Flight Test-2.

The NASA, Boeing team continues to make progress on the investigation of the oxidizer isolation valve issue on the Starliner service module propulsion system that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

“I am proud of the work our integrated teams are doing,” said Steve Stich, manager of the Commercial Crew Program at NASA’s Kennedy Space Center in Florida. “This is a complex issue involving hazardous commodities and intricate areas of the spacecraft that are not easily accessed. It has taken a methodical approach and sound engineering to effectively examine.”

Boeing has demonstrated success in valve functionality using localized heating and electrical charging techniques. Troubleshooting on the pad, at the launch complex, and inside the Starliner production factory at Kennedy Space Center has resulted in movement of all but one of the original stuck valves. That valve has not been moved intentionally to preserve forensics for direct root cause analysis.

Most items on the fault tree have been dispositioned by the team including causes related to avionics, flight software and wiring. Boeing has identified a most probable cause related to oxidizer and moisture interactions, and although some verification work remains underway, our confidence is high enough that we are commencing corrective and preventive actions. Additional spacecraft and component testing will be conducted in the coming weeks to further explore contributing factors and necessary system remediation before flight.

Boeing completed a partial disassembly of three of the affected Orbital Maneuvering and Attitude Control (OMAC) thruster valves last month and plans to remove three valves from the OFT-2 spacecraft in the coming weeks for further inspection. The team also is evaluating additional testing to repeat the initial valve failures.

Boeing has identified several paths forward depending on the outcome of the testing to ultimately resolve the issue and prevent it from happening on future flights. These options could range from minor refurbishment of the current service module components to using another service module already in production. Each option is dependent on data points the team expects to collect in the coming weeks including a timeline for safely proceeding back to the launch pad.

“Safety of the Starliner spacecraft, our employees, and our crew members is this team’s number one priority,” said John Vollmer, vice president and program manager, Boeing’s Starliner program. “We are taking the appropriate amount of time to work through the process now to set this system up for success on OFT-2 and all future Starliner missions.”

Potential launch windows for OFT-2 continue to be assessed by NASA, Boeing, United Launch Alliance, and the Eastern Range. The team currently is working toward opportunities in the first half of 2022 pending hardware readiness, the rocket manifest, and space station availability.

Starliner Returns to Factory, Preparations Underway to Resolve Valve Issue

OFT-2 Starliner spacecraft
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing

Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.

The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.

The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.

In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.

NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

Boeing's CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021.
Boeing’s CST-100 Starliner spacecraft is in view in the United Launch Alliance Vertical Integration Facility at Space Launch Complex 41 on Aug. 9, 2021. Photo credit: Boeing

NASA and Boeing have decided to postpone the launch of Orbital Flight Test-2 to the International Space Station as teams continue work on the CST-100 Starliner propulsion system.

Engineering teams have been working to restore functionality to several valves in the Starliner propulsion system from inside United Launch Alliance’s Vertical Integration Facility that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

“We made a lot of progress to open the valves from inside the Vertical Integration Facility, and the NASA-Boeing teams did a great job doing everything we could to get ready for this launch opportunity,” said Kathryn Lueders, associate administrator for NASA’s Human Exploration and Operations Mission Directorate. “Although we wanted to see Starliner fly in this window, it’s critical that our primary focus is the safety of the crew transportation system – for the safety of the space station and the crew members that will be flying on these vehicles. We’ll only fly this test when we think we are ready, and can complete the mission objectives.”

Inside the VIF, Boeing was able to prompt nine of 13 valves open that previously were in the closed position using commanding, mechanical, electrical and thermal techniques. Teams will now begin the process to move Starliner back to Boeing’s Commercial Crew and Cargo Processing Facility in Florida for deeper-level troubleshooting of four propulsion system valves that remain closed and more detailed analysis on the spacecraft.

“Mission success in human spaceflight depends on thousands of factors coming together at the right time,” said John Vollmer, vice president and program manager, Boeing’s Commercial Crew Program. “We’ll continue to work the issue from the Starliner factory and have decided to stand down for this launch window to make way for other national priority missions.”

NASA, Boeing and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing Make Progress on Starliner Valve Issue

Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves.
Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves. Photo credit: Boeing

NASA and Boeing continued work over the weekend and Monday morning on the company’s CST-100 Starliner spacecraft service module propulsion system in preparation for the Orbital Flight Test-2 mission to the International Space Station.

Work progressed to restore functionality to several valves in the Starliner propulsion system that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

With the United Launch Alliance (ULA) Atlas V and Starliner in the Vertical Integration Facility (VIF) near Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida, engineering teams are able to power on Starliner allowing the vehicle to receive commands, and have direct access to the spacecraft for troubleshooting.

Inside the VIF, Boeing has been able to command seven of 13 valves open that previously were in the closed position. Test teams are applying mechanical, electrical and thermal techniques to prompt the valves to open, and are moving forward with a systematic plan to open the remainder of the affected valves, demonstrate repeatable system performance, and verify the root cause of the issue before returning Starliner to the launch pad for its Orbital Flight Test-2 mission.

Boeing also has completed physical inspections and chemical sampling on the exterior of a number of the affected valves, which indicated no signs of damage or external corrosion.

In the coming days, NASA and Boeing will continue work to bring all affected valves into the proper configuration. If all valve functionality can be restored and root cause identified, NASA will work with Boeing to determine a path to flight for the important uncrewed mission to the space station.

NASA, Boeing and ULA are assessing the potential for several launch opportunities with the earliest available in mid-August. Any launch date options would protect for the planetary window for the agency’s Lucy mission – the first-ever mission to explore Trojan asteroids.

NASA, Boeing Continue to Work Toward Understanding Starliner Service Module Valve Performance Issue

NASA Boeing OFT-2 Starliner spacecraft
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft is shown on top of the United Launch Alliance (ULA) Atlas V rocket in ULA’s Vertical Integration Facility.

NASA continues to work side-by-side with Boeing to understanding the CST-100 Starliner’s service module valve performance, including the unexpected indications some of the valves were in the closed position during its Aug. 3 launch attempt of Orbital Flight Test-2 (OFT-2).

With troubleshooting ongoing in the United Launch Alliance Vertical Integration Facility at NASA’s Kennedy Space Center in Florida, where Starliner will be powered and run through various procedures to help understand the issue, NASA will move forward with the launch and berthing of an important cargo mission to the International Space Station.

Northrop Grumman’s Cygnus spacecraft is scheduled to launch on the company’s Antares rocket at 5:56 p.m. Tuesday, Aug. 10, from NASA’s Wallops Flight Facility in Wallops Island, Virginia, with capture and berthing scheduled two days later at about 6:10 a.m. EDT Thursday, Aug. 12.

In parallel, managers and engineers with NASA and Boeing will continue to evaluate schedules based on where the troubleshooting efforts take them before deciding when the next official launch for the OFT-2 mission will take place.

Boeing Starliner Returned to Vertical Integration Facility for Testing

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen near the Vertical Integration Facility at Cape Canaveral Space Force Station in Florida. Photo by NASA/Joel Kowsky

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system during the countdown for its Aug. 3 launch attempt.

Now that the United Launch Alliance Atlas V rocket with the Starliner spacecraft on top has been returned to its Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Space Force Station, engineers will have direct access to Starliner with the assembly of support structures around the spacecraft’s service module for continued troubleshooting.

Boeing will power up Starliner, allowing the vehicle to receive commands providing the teams with real-time data.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved and the availability of the International Space Station and its crew to support the spacecraft’s arrival.

NASA, Boeing Continue Starliner Data Analysis

Atlas V rocket with Starliner on launch pad
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen on the launch pad on Thursday, July 29, 2021, at Space Launch Complex 41 in preparation for the Orbital Flight Test-2 (OFT-2) mission at Cape Canaveral Space Force Station in Florida. Photo Credit: (NASA/Aubrey Gemignani)

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system.

The United Launch Alliance Atlas V with the Starliner spacecraft on top will be returned to its Vertical Integration Facility (VIF) at Launch Complex-41 on Cape Canaveral Space Force Station Thursday where engineers will have direct access to Starliner for continued troubleshooting.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing Space agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved.

“The Boeing and NASA teams are working methodically to understand what caused the valve indications on the Starliner service module propulsion system,” Steve Stich, manager of the Commercial Crew Program, said. “The troubleshooting in the Vertical Integration Facility will help focus on potential causes and next steps before we fly the OFT-2 mission.”

Early in the launch countdown for the Tuesday, Aug. 3 launch attempt, engineers detected indications that not all of Starliner’s propulsion system valves were in the proper configuration needed for launch of the company’s second uncrewed orbital flight test to the International Space Station, a mission designed to test the end-to-end capabilities of the crew-capable system as part of NASA’s Commercial Crew Program.

Mission teams decided to halt the countdown to further analyze the issue, which was conducted later Tuesday via several steps to troubleshoot the incorrect valve indications, including cycling the service module propulsion system valves.

After presenting the data to NASA and Boeing managers, it was decided to relocate the Atlas V and Starliner to the VIF for further inspection and testing where access to the spacecraft is available. Engineering teams have ruled out a number of potential causes, including software, and the direct access is required to continue the assessment.

“This mission is extremely important for the Commercial Crew Program on the path to the Boeing Crewed Flight Test,” Stich said. “We will fly the mission when we are ready. I am extremely proud of the NASA and Boeing teams for their professionalism, perseverance, and methodical approach to solving complex problems.”

NASA and Boeing will take whatever time is necessary to ensure Starliner is ready for its important uncrewed flight test to the space station and will look for the next available opportunity after resolution of the issue.

NASA, Boeing Standing Down on Aug. 4 Starliner Launch Attempt

NASA and Boeing are standing down from the Wednesday, Aug. 4, launch attempt of the agency’s Orbital Flight Test-2 to the International Space Station as mission teams continue to examine the cause of the unexpected valve position indications on the CST-100 Starliner propulsion system.

Early in the launch countdown for the Aug. 3 attempt, mission teams detected indications that not all valves were in the proper configuration needed for launch. Mission teams decided to halt the countdown to further analyze the issue.

NASA and Boeing worked through several steps to troubleshoot the incorrect valve indications, including cycling the service module propulsion system valves, within the current configuration of the Starliner and United Launch Alliance Atlas V rocket at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida.

Mission teams have decided to roll the Atlas V and Starliner back to the Vertical Integration Facility (VIF) for further inspection and testing where access to the spacecraft is available. Boeing will power down the Starliner spacecraft this evening. The move to the VIF is expected to take place as early as tomorrow.

Engineering teams have ruled out a number of potential causes, including software, but additional time is needed to complete the assessment.

NASA and Boeing will take whatever time is necessary to ensure Starliner is ready for its important uncrewed flight test to the space station and will look for the next available opportunity after resolution of the issue.

NASA’s Boeing OFT-2: Launch Scrubbed for Aug. 3. Attempt

The United Launch Alliance Atlas V rocket with Boeing's CST-100 Starliner atop is on the pad at Space Launch Complex-41 on Aug. 3, 2021.
The United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner atop is on the pad at Space Launch Complex-41 on Aug. 3, 2021. Photo credit: NASA

NASA, Boeing and United Launch Alliance (ULA) have scrubbed the Aug. 3 launch attempt of the agency’s Orbital Flight Test-2 to the International Space Station due to unexpected valve position indications in the Starliner propulsion system. ULA will begin removing propellant from the Atlas V rocket.

Pending resolution of the forward work, our next available launch opportunity would be 12:57 p.m. EDT on Wednesday, Aug. 4.

For more information on the technical issue, click here.

Follow along with launch activities and get more information about the mission at: https://blogs.nasa.gov/commercialcrew/.

Learn more about commercial crew and space station activities by following @Commercial_Crew@space_station, and @ISS_Research on Twitter as well as the Commercial Crew FacebookISS Facebook and ISS Instagram accounts