NASA to Secure Additional Commercial Crew Transportation

NASA insignia.NASA intends to issue a sole source modification to SpaceX to acquire up to three additional crew flights to the International Space Station as part of its Commercial Crew Transportation Capabilities (CCtCap) contract. The additional crew flights allow NASA to maintain an uninterrupted U.S. capability for human access to the space station.

In October, NASA issued a request for information from American industry capable of providing safe, reliable, and cost-effective human space transportation services to and from the International Space Station to ensure a continuous human presence aboard the microgravity laboratory.

After a thorough review of the near-term certified capabilities and responses from American industry, NASA’s assessment is that the SpaceX crew transportation system is the only one certified to meet NASA’s safety requirements to transport crew to the space station, and to maintain the agency’s obligation to its international partners in the needed timeframe.

“It’s critical we begin to secure additional flights to the space station now so we are ready as these missions are needed to maintain a U.S. presence on station,” said Kathy Lueders, associate administrator, NASA’s Space Operations Mission Directorate. “Our U.S. human launch capability is essential to our continued safe operations in orbit and to building our low-Earth orbit economy.”

NASA anticipates a potential need to use any additional flights as early as 2023 to maintain mission readiness. Securing additional flights now also allows NASA to continue working with Boeing on the development of the company’s CST-100 Starliner spacecraft, which also will fly NASA and international partner astronauts to and from the space station after completing its certification effort.

“NASA commends Boeing for its ongoing investigation of the oxidizer isolation valve issue that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August, prioritizing safety over schedule while working to solve this challenge,” said Phil McAlister, director, commercial spaceflight at NASA. “NASA and Boeing will provide additional updates on the status of Starliner’s next mission as we work through the investigation and verification efforts to determine root cause and effective vehicle remediation.”

NASA continues to have a need for two unique crew capabilities to ensure dissimilar redundancy, maintain safe space station operations, and allow each company to work through any unforeseen issues that could arise as private industry builds operational experience with these new systems. NASA’s plan is still to alternate missions between SpaceX and Boeing, once both are operational.

The current sole source modification does not preclude NASA from seeking additional contract modifications in the future for additional transportation services as needed.

NASA also is working to extend the life of the space station beyond 2024 to allow for a seamless transition to commercially operated, low-Earth orbit destinations and allow NASA to continue its vital scientific research to prepare for human exploration beyond low-Earth orbit to benefit life on Earth. NASA continues to anticipate a need for crew transportation into the foreseeable future as the agency enables a low-Earth orbit economy.

In 2014, NASA awarded the CCtCap contracts to Boeing and SpaceX through a public-private partnership as part of the agency’s Commercial Crew Program. Under CCtCap, NASA certifies that a provider’s space transportation system meets the agency’s requirements prior to flying missions with astronauts. After years of development, commercial crew systems have achieved or are nearing operational readiness for regular crewed missions, including providing a lifeboat capability, to the space station.

For more than 20 years, NASA has continuously had astronauts living and working aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. As a global endeavor, 249 people from 19 countries have visited the unique microgravity laboratory that has hosted more than 3,000 research and educational investigations from researchers in 109 countries and areas.

The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low-Earth orbit. As commercial companies focus on providing human space transportation services and developing a robust low-Earth orbit economy, NASA is preparing for human exploration of the Moon and Mars.

Crew Dragon Arrives at Launch Pad Ahead of Crew-3 Launch

A SpaceX Falcon 9 rocket stands at Launch Complex 39A in Florida ahead of the Crew-3 launch.
A SpaceX Falcon 9 rocket with the company’s Crew Dragon spacecraft onboard is seen on the launch pad at Launch Complex 39A on Wednesday, Oct. 27, 2021, as preparations continue for the Crew-3 mission at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Joel Kowsky

The SpaceX Falcon 9 rocket, with the Crew Dragon spacecraft atop, rolled out to the launch pad last night, Oct. 26, at Kennedy Space Center in Florida in preparation for NASA’s SpaceX Crew-3 launch. The rocket is now in a vertical position at Kennedy’s Launch Pad 39A, awaiting liftoff on Sunday, Oct. 31.

The SpaceX Falcon 9 rocket with Crew Dragon rolls out to Launch Complex 39A at Kennedy Space Center in Florida for the Crew-3 launch.
The SpaceX Falcon 9 rocket with Crew Dragon rolls out to Launch Complex 39A at Kennedy Space Center in Florida in the early morning hours of Oct. 27, 2021 for NASA’s SpaceX Crew-3 mission. Photo credit: SpaceX

The mission will carry NASA astronauts Raja Chari, Tom Marshburn, and Kayla Barron, as well as ESA (European Space Agency) astronaut Matthias Maurer, to the International Space Station for a six-month stay. Launch is scheduled for 2:21 a.m. EDT, and the crew is expected to arrive at the orbiting laboratory about 22 hours later, at 12:10 a.m. EDT on Monday, Nov.1.

Upon their arrival, the Crew-3 astronauts will have a short overlap with NASA astronauts Shane Kimbrough and Megan McArthur, JAXA (Japan Aerospace Exploration Agency) astronaut Akihiko Hoshide, and ESA astronaut Thomas Pesquet, who flew to the station as part of the agency’s SpaceX Crew-2 mission in April 2021. Crew-2 astronauts are scheduled to return to Earth in early November.

The mission will fly a new Crew Dragon spacecraft, which crew members have named Endurance, and will be the first to fly a previously used nosecone. In support of Crew-3, SpaceX implemented several improvements to the Crew Dragon system based on knowledge gained from previous flights, including making a software change to build in more communications robustness against radiation effects while docked, adding more cleaning techniques to cut down on foreign object debris, improving computer performance during re-entry, and enhancing the spacecraft’s docking procedures and mechanisms to mitigate hardware interference on the space station side of the interface.

Tomorrow, Oct. 28, the Crew-3 astronauts and launch teams will conduct a full dress rehearsal in preparation for launch. Find out what that entails in the video below.

Crew-3 Astronauts to Hold Virtual Media Event from Crew Quarters

SpaceX Crew-3 astronauts (from left) Thomas Marshburn, Matthias Maurer, Kayla Barron and Raja Chari are pictured during preflight training at NASA's Kennedy Space Center in Florida.
SpaceX Crew-3 astronauts (from left) Thomas Marshburn, Matthias Maurer, Kayla Barron, and Raja Chari are pictured during preflight training at NASA’s Kennedy Space Center in Florida on July 26, 2021. Photo credit: SpaceX

NASA astronauts Raja Chari, Tom Marshburn, and Kayla Barron, as well as ESA (European Space Agency) astronaut Matthias Maurer, will hold a virtual media event today, Oct. 27, at 8 a.m., from inside the Astronaut Crew Quarters at NASA’s Kennedy Space Center in Florida. Watch live on NASA Television or the agency’s website.

Media may call in to ask the crew questions ahead of their upcoming launch to the International Space Station. Contact the Kennedy newsroom for details on how to participate.

Housed inside the Neil Armstrong Operations and Checkout (O&C) Building, the crew quarters are where the astronauts remain while awaiting launch once they arrive at the Florida spaceport. The facility dates back to the Apollo Program and was also used for missions under the Space Shuttle Program. Inside the crew quarters are 23 bedrooms – each with its own bathroom – and the iconic suit room, where astronauts are helped into their spacesuits before exiting the O&C and making the short journey to the launch pad.

Crew-3 astronauts Chari, Marshburn, Barron, and Maurer are scheduled to lift off aboard a Falcon 9 rocket and Crew Dragon spacecraft from Kennedy’s Launch Complex 39A on Sunday, Oct. 31. Launch is targeted for 2:21 a.m. EDT, and approximately 22 hours later, they will arrive at the orbiting laboratory for a short overlap with the astronauts who flew to the station as part of NASA’s SpaceX Crew-2 mission in April.

Return of Crew-2 astronauts Shane Kimbrough, Megan McArthur, Akihiko Hoshide, and Thomas Pesquet is planned for early November, with a splashdown of Crew Dragon Endeavor at one of seven landing zones off the coast of Florida. Crew-3 astronauts will remain on board for a six-month science mission, living and working as part of what is expected to be a seven-member crew.

NASA, Boeing to Provide Update on Boeing’s Orbital Flight Test-2

Boeing’s CST-100 Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket on Cape Canaveral Space Force Station in Florida.
Boeing’s CST-100 Starliner spacecraft sits atop a United Launch Alliance Atlas V rocket on Cape Canaveral Space Force Station in Florida. Photo credit: Boeing

NASA and Boeing will hold a joint teleconference at 2:30 p.m. EDT Tuesday, Oct. 19, to update media on the company’s CST-100 Starliner spacecraft. Teams will discuss work on the oxidizer isolation valve issue that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

Participants in the briefing will be:

  • Steve Stich, manager of NASA’s Commercial Crew Program
  • John Vollmer, vice president and program manager, Boeing Commercial Crew Program
  • Michelle Parker, chief engineer, Boeing Space and Launch

Audio of the teleconference will stream live online at: https://www.nasa.gov/live.

To participate in the teleconference, media must contact ksc-newsroom@mail.nasa.gov by 1:30 p.m. Oct. 19 for the dial-in information.

The OFT-2 mission will launch Starliner on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the space station before returning to land in the western United States about a week later as part of an end-to-end test flight to prove the system is ready to fly crew.

Learn more about NASA’s Commercial Crew Program at: https://www.nasa.gov/commercialcrew.

 

NASA, Boeing Update Starliner Orbital Flight Test-2 Status

The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021.
The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021. Part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing

Editor’s note: This blog was updated Oct. 8 to reflect that the team is working toward launch opportunities in the first half of 2022 for Orbital Flight Test-2.

The NASA, Boeing team continues to make progress on the investigation of the oxidizer isolation valve issue on the Starliner service module propulsion system that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

“I am proud of the work our integrated teams are doing,” said Steve Stich, manager of the Commercial Crew Program at NASA’s Kennedy Space Center in Florida. “This is a complex issue involving hazardous commodities and intricate areas of the spacecraft that are not easily accessed. It has taken a methodical approach and sound engineering to effectively examine.”

Boeing has demonstrated success in valve functionality using localized heating and electrical charging techniques. Troubleshooting on the pad, at the launch complex, and inside the Starliner production factory at Kennedy Space Center has resulted in movement of all but one of the original stuck valves. That valve has not been moved intentionally to preserve forensics for direct root cause analysis.

Most items on the fault tree have been dispositioned by the team including causes related to avionics, flight software and wiring. Boeing has identified a most probable cause related to oxidizer and moisture interactions, and although some verification work remains underway, our confidence is high enough that we are commencing corrective and preventive actions. Additional spacecraft and component testing will be conducted in the coming weeks to further explore contributing factors and necessary system remediation before flight.

Boeing completed a partial disassembly of three of the affected Orbital Maneuvering and Attitude Control (OMAC) thruster valves last month and plans to remove three valves from the OFT-2 spacecraft in the coming weeks for further inspection. The team also is evaluating additional testing to repeat the initial valve failures.

Boeing has identified several paths forward depending on the outcome of the testing to ultimately resolve the issue and prevent it from happening on future flights. These options could range from minor refurbishment of the current service module components to using another service module already in production. Each option is dependent on data points the team expects to collect in the coming weeks including a timeline for safely proceeding back to the launch pad.

“Safety of the Starliner spacecraft, our employees, and our crew members is this team’s number one priority,” said John Vollmer, vice president and program manager, Boeing’s Starliner program. “We are taking the appropriate amount of time to work through the process now to set this system up for success on OFT-2 and all future Starliner missions.”

Potential launch windows for OFT-2 continue to be assessed by NASA, Boeing, United Launch Alliance, and the Eastern Range. The team currently is working toward opportunities in the first half of 2022 pending hardware readiness, the rocket manifest, and space station availability.

NASA, SpaceX Adjust Next Space Station Crew Rotation Launch Date

SpaceX Crew-3 astronauts (from left) Matthias Maurer, Thomas Marshburn, Raja Chari and Kayla Barron pose for a portrait during preflight training at SpaceX headquarters in Hawthorne, California.
SpaceX Crew-3 astronauts (from left) Matthias Maurer, Thomas Marshburn, Raja Chari and Kayla Barron pose for a portrait during preflight training at SpaceX headquarters in Hawthorne, California. Photo credit: SpaceX

NASA and SpaceX now are targeting 2:43 a.m. EDT Saturday, Oct. 30, for the agency’s Crew-3 launch to the International Space Station. The date adjustment provides two consecutive launch attempts for the crew rotation mission with the backup time and date of 2:21 a.m. Sunday, Oct. 31.

NASA astronauts Raja Chari, mission commander, Tom Marshburn, pilot, and Kayla Barron, mission specialist and ESA (European Space Agency) astronaut Matthias Maurer, also a mission specialist, will launch on the SpaceX Crew Dragon spacecraft and Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

Crew-3 astronauts are scheduled for a long-duration science mission aboard the orbiting laboratory, living and working as part of what is expected to be a seven-member crew.

Launch on Oct. 30 would have Crew-3 arriving at the space station early the next day after an approximate 22-hour journey for a short overlap with the astronauts who flew to the station as part of the agency’s SpaceX Crew-2 mission.

Return of Crew-2 with NASA astronauts Shane Kimbrough and Megan McArthur, Japan Aerospace Exploration Agency (JAXA) astronaut Akihiko Hoshide, and ESA astronaut Thomas Pesquet, is currently planned for early-to-mid November.

Missions teams continue to target April 15, 2022, for the launch of NASA’s SpaceX Crew-4 mission to the space station for a six-month science mission aboard the microgravity laboratory.

Crew-4 will be commanded by Kjell Lindgren with Bob Hines as pilot, both NASA astronauts. ESA astronaut Samantha Cristoforetti will be a mission specialist and command the station’s Expedition 68 crew, while the remaining crew member has yet to be named. Crew-3 astronauts are set to return to Earth in late April 2022 following a similar handover with Crew-4.

Starliner Returns to Factory, Preparations Underway to Resolve Valve Issue

OFT-2 Starliner spacecraft
Boeing’s Starliner spacecraft returned Aug. 19, 2021, from the United Launch Alliance Vertical Integration Facility to the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida, where teams will work to diagnose and resolve a valve issue detected during the Aug. 3 launch attempt of NASA Boeing’s Orbital Flight Test-2. Photo credit: Boeing

Teams from Boeing and United Launch Alliance (ULA) safely returned the CST-100 Starliner to its production facility in Florida on Aug. 19 for continued work on the spacecraft’s service module propulsion system.

The Starliner Orbital Flight Test-2 spacecraft was removed from its Atlas V rocket inside the Vertical Integration Facility at Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida and returned to the Commercial Crew and Cargo Processing Facility on NASA’s Kennedy Space Center.

The team now will perform propulsion system checkouts inside the factory’s hazardous processing area and determine the appropriate vehicle configuration for accessing and analyzing the system further. NASA and Boeing will recommend forward work as part of a formal process designed to aid in determining root cause and remediation steps.

In the weeks ahead, engineering teams from NASA and Boeing will work to diagnose and ultimately resolve a valve issue detected during the Aug. 3 countdown for NASA’s Boeing Orbital Flight Test-2, and resulted in the decision to postpone the launch destined for the International Space Station.

NASA, Boeing, and ULA will establish a new launch date once the issue is resolved.

NASA, Boeing Make Progress on Starliner Valve Issue

Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves.
Boeing engineers continue work at the United Launch Alliance Vertical Integration Facility on the Starliner propulsion system valves. Photo credit: Boeing

NASA and Boeing continued work over the weekend and Monday morning on the company’s CST-100 Starliner spacecraft service module propulsion system in preparation for the Orbital Flight Test-2 mission to the International Space Station.

Work progressed to restore functionality to several valves in the Starliner propulsion system that did not open as designed during the launch countdown for the Aug. 3 launch attempt. The valves connect to thrusters that enable abort and in-orbit maneuvering.

With the United Launch Alliance (ULA) Atlas V and Starliner in the Vertical Integration Facility (VIF) near Space Launch Complex-41 on Cape Canaveral Space Force Station in Florida, engineering teams are able to power on Starliner allowing the vehicle to receive commands, and have direct access to the spacecraft for troubleshooting.

Inside the VIF, Boeing has been able to command seven of 13 valves open that previously were in the closed position. Test teams are applying mechanical, electrical and thermal techniques to prompt the valves to open, and are moving forward with a systematic plan to open the remainder of the affected valves, demonstrate repeatable system performance, and verify the root cause of the issue before returning Starliner to the launch pad for its Orbital Flight Test-2 mission.

Boeing also has completed physical inspections and chemical sampling on the exterior of a number of the affected valves, which indicated no signs of damage or external corrosion.

In the coming days, NASA and Boeing will continue work to bring all affected valves into the proper configuration. If all valve functionality can be restored and root cause identified, NASA will work with Boeing to determine a path to flight for the important uncrewed mission to the space station.

NASA, Boeing and ULA are assessing the potential for several launch opportunities with the earliest available in mid-August. Any launch date options would protect for the planetary window for the agency’s Lucy mission – the first-ever mission to explore Trojan asteroids.

NASA, Boeing Continue to Work Toward Understanding Starliner Service Module Valve Performance Issue

NASA Boeing OFT-2 Starliner spacecraft
On July 29, 2021, Boeing’s CST-100 Starliner spacecraft is shown on top of the United Launch Alliance (ULA) Atlas V rocket in ULA’s Vertical Integration Facility.

NASA continues to work side-by-side with Boeing to understanding the CST-100 Starliner’s service module valve performance, including the unexpected indications some of the valves were in the closed position during its Aug. 3 launch attempt of Orbital Flight Test-2 (OFT-2).

With troubleshooting ongoing in the United Launch Alliance Vertical Integration Facility at NASA’s Kennedy Space Center in Florida, where Starliner will be powered and run through various procedures to help understand the issue, NASA will move forward with the launch and berthing of an important cargo mission to the International Space Station.

Northrop Grumman’s Cygnus spacecraft is scheduled to launch on the company’s Antares rocket at 5:56 p.m. Tuesday, Aug. 10, from NASA’s Wallops Flight Facility in Wallops Island, Virginia, with capture and berthing scheduled two days later at about 6:10 a.m. EDT Thursday, Aug. 12.

In parallel, managers and engineers with NASA and Boeing will continue to evaluate schedules based on where the troubleshooting efforts take them before deciding when the next official launch for the OFT-2 mission will take place.

Boeing Starliner Returned to Vertical Integration Facility for Testing

A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft onboard is seen near the Vertical Integration Facility at Cape Canaveral Space Force Station in Florida. Photo by NASA/Joel Kowsky

NASA and Boeing are continuing to work through steps to determine what caused the unexpected valve position indications on the CST-100 Starliner propulsion system during the countdown for its Aug. 3 launch attempt.

Now that the United Launch Alliance Atlas V rocket with the Starliner spacecraft on top has been returned to its Vertical Integration Facility (VIF) at Space Launch Complex-41 on Cape Canaveral Space Force Station, engineers will have direct access to Starliner with the assembly of support structures around the spacecraft’s service module for continued troubleshooting.

Boeing will power up Starliner, allowing the vehicle to receive commands providing the teams with real-time data.

The data will drive any corrective measures that may be necessary to ensure Starliner is ready for launch. When NASA’s Commercial Crew Program and Boeing agree the issue is resolved, a new launch opportunity will be selected, taking into account the readiness of all parties involved and the availability of the International Space Station and its crew to support the spacecraft’s arrival.