Roaming the Depths: The Role of Autonomous Assets in the EXPORTS Campaign

By Shawnee Traylor, PhD student in the joint Massachusetts Institute of Technology and Woods Hole Oceanographic Institution program in Chemical Oceanography / NORTHERN ATLANTIC OCEAN /

Satellites have undoubtedly opened up new ways for scientists to study the ocean, giving us global coverage of the surface of the ocean without ever having to step foot on a ship. But how can we learn what lies beneath the surface?

The classic way oceanographers study the ocean is, of course, going there. But putting together a cruise is no easy feat. They take years of planning, preparation, and enormous teams of scientists, mariners, and logistics personnel to bring to fruition. Once aboard, teams must adapt to perform delicate tasks under the demanding conditions of working at sea. Some cruises (such as this one!) run into storm after storm, which limits the ability to conduct our ship-based scientific missions.

One of the seagliders deployed on DY130, the cruise immediately prior to ours, which helped us scout features ahead of the ship and make informed decisions about where to sample.
One of the seagliders deployed on DY130, the cruise immediately prior to ours, which helped us scout features ahead of the ship and make informed decisions about where to sample. Credit: Filipa Carvalho, National Oceanography Centre

The difficulty of science at sea has been one driving factor in the development of autonomous platforms for use in scientific research. The wide range of platforms allow us to study places and timescales that are inaccessible to ships–such as the physics of water under ice sheets, or the interannual variability of biogeochemical cycles now and into the future.

The EXPORTS campaign utilizes a range of autonomous assets to collect data over time and space, and at different depths. Gliders silently soar through the water to waypoints provided by pilots on land, collecting measurements down to 3,281 feet (1000 meters) several times a day. Autonomous floats such as the Biogeochemical Argo float shown in the photo below remain in the ocean for up to five years, gathering critical data as they drift in the ocean’s currents. Drifters deployed at the surface give insight to the upper ocean currents. Like satellite imagery, these assets allow us to make informed decisions while at sea by scouting out the biology, chemistry, and physics of a region without having to move the ship. The assets that remain in the water after the cruise continue our study and give further context to our ship-based measurements.

Shawnee with a BioArgo float on the back deck, immediately prior to deployment. Credit: Leah Johnson, Brown University
Shawnee with a BioArgo float on the back deck, immediately prior to deployment. Credit: Leah Johnson, Brown University

Each type of platform carries a unique sensor package, though most of them measure temperature, salinity, and depth. The floats and gliders utilized in the EXPORTS cruise also include a suite of biogeochemical sensors that measure oxygen, bio-optics, and nitrate. The bio-optical package measures things like chlorophyll, a proxy for the abundance of phytoplankton, and backscatter, which is used to study particles in the water that may be important to carbon export.

On this cruise, I was tasked with deploying two BiogeochemicalArgo floats, to both inform our mission while at sea and enable us to continue our study of the region after we return home. Similar to gliders, these floats move through the water column by finely tuning their buoyancy by moving mineral oil between internal and external bladders. When it is time to take measurements, they sink down to 6,561 feet (2,000 meters) and begin gathering data on their way to the surface, constructing a profile of the water’s properties. Once at the surface, they transmit this data back to servers on land via satellite, who process and send it back to the team on the ship.

Two BioArgo floats running through post-shipment checks on the deck of the RRS Discovery. Credit: Shawnee Traylor, MIT/Woods Hole Oceanographic Institution
Two BioArgo floats running through post-shipment checks on the deck of the RRS Discovery. Credit: Shawnee Traylor, MIT/Woods Hole Oceanographic Institution

We deployed the floats in the first few days of the cruise, transiting over the first drop point at 4:30 AM. The brisk early morning air stole any lasting grogginess from my eyes as I grabbed a drill and opened their wooden crates. I hooked two alligator clips onto the head of the float and successfully made communication, waking it from its slumber. After a few final pre-deployment checks, it was the moment of truth. My fingers hovered above the keyboard, ripe with the responsibility of ensuring a successful deployment. One final keystroke activated the float, and it was time to release it into the vast black waves. How I wished for a blinking light, the purr of a motor, or any sign of life. But it stood silent. I had to trust that once we released it overboard, it would rise once again.

Imaging the Ocean

By Laetitia Drago, PhD student at Sorbonne Université / NORTHERN ATLANTIC OCEAN /

As a child, I used to spend my summers on the rocks near the water in Villefranche-sur-mer, France, my hands busy with a bucket and a small net. I was fascinated by the organisms surrounding me both on the rocks and in the water. Little did I know that I would have the chance to explore the open ocean with a bigger hand net, and multiple imaging instruments on a 231 foot (70.5 meter) long vessel.

Plankton net with 20 meter mesh size on the deck of the Sarmiento de Gamboa ship.
Plankton net with 20 meter mesh size on the deck of the Sarmiento de Gamboa ship (left) and the ship itself (right). Credit: Laetitia Drago

I started my PhD in October at IMEV in Villefranche-sur-mer, France, on the impact of zooplankton on the biological carbon pump through an in-situ imaging approach. It’s in this context that I had the privilege to join this impressive EXPORTS campaign onboard the Sarmiento de Gamboa research vessel. This vessel’s scientific team consisted mostly of people coming from the Woods Hole Oceanographic Institute, researching the ocean twilight zone, the layer of water between 656 and 3,280 feet (200 and 1,000 meters) below the surface of the global ocean. It is a very important layer of the ocean for the biological carbon pump, the process which is at the core of my PhD.

 The biological carbon pump moves carbon from the surface to the intermediate and deep oceans. This process starts at the surface of the water where small plantlike organisms called phytoplankton do photosynthesis, the process of using light to transform carbon dioxide into organic matter. This phytoplankton is then eaten by zooplankton, which transfer the carbon from the surface to the intermediate and deep oceans through multiple processes such as producing fecal pellets and daily migration up and down throughout the ocean. These organisms constitute an important source of food for fish, making them an important link in the food webs supporting fisheries all around the world.

 To look more closely at the ocean twilight zone, I brought imaging instruments to observe which organisms live in this layer. These included Underwater Vision Profilers (UVP). These instruments were developed in my lab in order to study large particles and zooplankton up to nearly 20,000 feet (6000 meters) in depth! The instrument counts and measures particles greater than 0.1 millimeters and saves images of the ones greater than 0.6 millimeters because those are the ones with a clear enough resolution to determine which taxonomic group we’re looking at. To do that, it uses a camera and a dedicated red light flashing system. On the image of the UVP6 you can see that there is a light. It can flash every few  seconds depending on how you program the instrument. For the UVP6 for example, it was programmed to flash once every two seconds. This way, it illuminated a volume of water every two seconds below the camera, which can then take a picture of the illuminated field of view.

The UVP5 has already performed more than 10,000 profiles in the ocean throughout the 10 years since its creation. It has been used in all the oceans fixed on CTD rosettes like the one used during this cruise. CTD rosettes are submerged in the ocean to measure temperature, depth and salinity in the ocean.

Deployment of the CTD frame containing the UVP5 and Niskin bottles. Credit: Laetitia Drago
Deployment of the CTD frame containing the UVP5 and Niskin bottles. Credit: Laetitia Drago

I also used two UVP6s, a more versatile, small and powerful version of the instrument. Each one was in a cage, fixed to a drifting line which was deployed at sea. We hope that the images taken by these two instruments will help improve our knowledge of the biological carbon pump.

UVP6 in its cage (left) and during the deployment (right). Credit: Laetitia Drago
UVP6 in its cage (left) and during the deployment (right). Credit: Laetitia Drago

I also brought with me a Planktoscope. This microscope platform was designed at Stanford University by Plankton Planet and the Prakash Lab in the context of frugal science, which aims to bring science to the maximum number of people. It can be customized, redesigned and mounted aboard a ship by anyone in the world at a very affordable price!

Using a net or the water from the Niskin bottles (as seen in the second picture), I imaged the organisms living in the water and watched as the composition of organisms changed between the different parts of the ocean that we sampled.

Planktoscope imaging a sample collected with the net. Credit: Marley Parker and Laetitia Drago
Planktoscope imaging a sample collected with the net. Credit: Marley Parker and Laetitia Drago

Here a few images acquired by these instruments:

From left to right: Copepod (UVP6), Fish (UVP6), Shrimp (UVP5), Radiolarian (UVP5), Copepod nauplii (Planktoscope), Thalassionema diatom chain (Planktoscope). Credits: Laetitia Drago
From left to right: Copepod (UVP6), Fish (UVP6), Shrimp (UVP5), Radiolarian (UVP5), Copepod nauplii (Planktoscope), Thalassionema diatom chain (Planktoscope). Credits: Laetitia Drago

As you might know, this journey was not an easy one. Three storms came our way during our mission at the PAP site. Nevertheless, we managed to do 11 profiles with the UVP5 and get six and a half days of images from each UVP6 with one image every two seconds. This amounts to around 148,500 vignettes for the UVP5, 323,000 vignettes for the UVP6 and 79,200 vignettes for the Planktoscope. 

The storms were unfortunate for our life on board and the conditions which stopped us from sampling during half of our presence at the PAP site. However, it was fortunate in the sense that we have a unique dataset containing data before the first storm as well as data between the three storms. This will hopefully give us an idea on the potential impacts that one or multiple storms can have on zooplankton and particle flux.

Our hard work was of course rewarded by the data acquired but also by a wonderful sunrise at the end of a very long last night of sampling followed by a 15 minute visit from a group of common dolphins on our way back to Vigo.

Sunrise on the Sarmiento de Gamboa.Credit: Laetitia Drago
Sunrise on the Sarmiento de Gamboa.Credit: Laetitia Drago
Common dolphins. Credit: Laetitia Drago
Common dolphins. Credit: Laetitia Drago

Finally, I want to deeply thank the team in Villefranche-sur-mer, France, who trusted me with handling the instruments and supported me from afar as well as the very motivated team of scientists and the ship’s crew support who helped us acquire very important data which will hopefully help us to understand a little bit more the carbon processes at hand in the ocean twilight zone.

Making Plankton into Art

By Mikayla Cote, Master’s student at the University of Rhode Island / UNITED KINGDOM /

After flying to the United Kingdom, the EXPORTS scientists were in quarantine for two weeks prior to embarking on a month-long research cruise. While there was still some last-minute work to be done before departure, for most of us this meant there would be no shortage of free time spent alone in our hotel rooms. As one of the lab mates cheering on the sailors from home, I wanted to be a part of the effort to facilitate remote activities as they anticipated their month at sea.

Cynthia Beth Rubin, an artist who has been working with our plankton ecology lab for over a decade, began offering her plankton drawing workshops over Zoom earlier on in the pandemic.

An example of ecology art from the Zoom class.
An example of ecology art from the Zoom class. Credit: Cynthia Beth Rubin, artist. https://cbrubin.net/index.html

The plankton we study in our lab are microscopic plant-like and animal-like organisms, so Cynthia’s workshop aims to enable us to see and even feel these organisms’ movement through drawing since most do not know what microscopic plankton look like.  While EXPORTS researchers have an idea of what these creatures look like thanks to microscopes, many in the general public don’t. Through Cynthia’s class, people are getting to see what plankton look like for the first time. 

 Many of those in isolation did not have access to paper typically used for drawing in their rooms, but it did not matter: lined paper, sticky notes, and even napkins were just fine. One of the postdocs in our lab decorated the hotel room T.V. with her sticky note drawings to enjoy for the rest of her time there. My favorite part of the workshop was holding up our finished drawings in front of our cameras to share with the group.

The EXPORTS team showing off their artistic talents during their quarantine.  Credit: Susan Menden-Deuer
The EXPORTS team showing off their artistic talents during their quarantine. Credit: Susan Menden-Deuer

We spent a few hours together and while I cannot say exactly how those felt in isolation far away from home, this workshop offered a release to loosely draw and share sketches with others as well as a brief distraction from the global pandemic.

Caption: The EXPORTS team showing off their artistic talents during their quarantine.  Credit: Susan Menden-Deuer
Caption: The EXPORTS team showing off their artistic talents during their quarantine.
Credit: Susan Menden-Deuer

Small Bugs With a Big Impact

By Diana Fontaine, Ph.D. Candidate at the University of Rhode Island Graduate School of Oceanography / NORTHERN ATLANTIC OCEAN /

We have about one more week of full science fun left in the North Atlantic NASA EXPORTS campaign. It has certainly been a wild ride at sea given that we’ve experienced about four storms to date. However, even with the weather days, we have still accomplished an impressive amount of science.

My name is Diana Fontaine and I have been working with team grazer, alongside Heather McNair (post-doctoral researcher), Laura Holland (post-doctoral researcher) and Erin Jones (Ph.D. student). Our role in the project is to quantify microzooplankton grazing on phytoplankton. Microzooplankton are single-celled organisms that play an important role in the transfer of energy in the ocean. They are a key link between phytoplankton, the free-floating plants and algae of the sea, and larger zooplankton. Many species of zooplankton eat phytoplankton, which transfers energy to higher trophic levels. Every day, microzooplankton eat about 70 percent of the daily phytoplankton growth in the ocean. This is quite a huge loss factor of phytoplankton! Thus, understanding microzooplankton grazing rates has large ecological importance for carbon cycling in the ocean.

Fontaine and her team at work
Fontaine and her team at work. Credit: Diana Fontaine

Measuring microzooplankton grazing involves many, many hours of pouring water and filtering. Sometimes I feel like all we do is pour water from one place to another. But so it goes as a plankton ecologist! The basis of these rates comes from measuring chlorophyll, a green pigment in phytoplankton cells that is used in photosynthesis, at the beginning and end of incubation experiments. But first we must collect the water used in our experiments from the CTD Rosette, a device that we use to measure seawater properties like conductivity, temperature and depth as well as collect seawater samples. After collection, we incubate the water in tanks on the back deck of the ship. These tanks are covered in various layers of mesh screens to imitate the light levels at different depths in the ocean. The microzooplankton hang out in the tanks for about 24 hours to give the microzooplankton a chance to have a feast on the growing phytoplankton. 

A sunset on the water, taken from the EXPORTS boat.
Enjoying sunsets while on the EXPORTS campaign. Credit: Diana Fontaine

Once time is up for the experiment, we again filter more water – this time to observe how much chlorophyll increased or decreased during the incubation. There are some details to these experiments that I won’t describe here. However, overall if chlorophyll increased during the incubation, then there was more phytoplankton growth than the  microzooplankton were able to graze. And vice versa – if there is less chlorophyll at the end of the incubation, then that mighty microzooplankton had quite the snack! On some days we have observed happy snack time for the microzooplankton,while on others there didn’t seem to be much grazing happening at certain depths in the water column. We’re looking forward to examining these rates in greater detail once back on land.  

Instruments aboard the EXPORTS boat prepare to deploy.
Getting ready to conduct experiments. Credit: Diana Fontaine

For the remainder of the cruise, we plan to carry out a couple more grazing experiments. Both the length of this cruise and the periodic storms have allowed us to collect data under varying environmental conditions. This will make for an exciting data analysis adventure, especially when we place our results in the framework of the broader NASA EXPORTS project. 

Once this next week of science is complete, we will pack up all of our gear and samples for shipment back to the United States. While it will be sad to leave our floating home for the past month or so, I look forward to the data analysis, collaboration, and writing up our results back on land. Throughout this whole experience, we have been incredibly lucky to have the helpful support of the NASA Project Office as we navigated the traveling, quarantining, and sailing during the pandemic. It has certainly been a rewarding experience to join along for the ride. 

The Effects of Nutrient and Light on Phytoplankton Communities: Implications for Carbon Export

By Delfina Navarro-Estrada and Shannon Burns, oceanography graduate students at the University of South Florida / NORTH ATLANTIC OCEAN /

In the sunlit portion of the ocean exist single-celled microscopic organisms called phytoplankton. They are called the ‘grass of the sea’ because these tiny plants and algae perform many of the same ecological functions as plants on land. As such, they provide energy to the organisms higher up in the food chain that feed on them, forming the foundation of many marine food webs. Through a process called photosynthesis, phytoplankton also remove carbon dioxide from the atmosphere and use it to produce sugars and other organic compounds that they require to live and grow.

Trace metal clean sampling bottles lined up like little soldiers, ready to be deployed on rosette for collection of water from different depths.
Trace metal clean sampling bottles lined up like little soldiers, ready to be deployed on rosette for collection of water from different depths. Credit: Delfina Navarro-Estrada

Because photosynthesis requires sunlight, phytoplankton thrive in the surface layer of the ocean. Eventually some of the carbon in phytoplankton is exported out of the sunlit surface layer to deeper waters where it can become sequestered from the atmosphere for decades to centuries. Export occurs through different mechanisms, including when organisms that get their carbon from eating phytoplankton die and sink, or produce fecal pellets that sink. Most of the sinking carbon ends up being dissolved back into the water column before ever reaching the deep sea or the seafloor. The small fraction of organic carbon that does reach the seafloor, however, ends up being buried and stored for hundreds of thousands of years. This process of carbon export is known as the biological carbon pump.

Incubation set up. In each of these bottles samples of water, brought from different depths, different micro- and macro-nutrients are added to study the response of the phytoplankton community.  Credit: Delfina Navarro-Estrada
Incubation set up. In each of these bottles samples of water, brought from different depths, different micro- and macro-nutrients are added to study the response of the phytoplankton community. Credit: Delfina Navarro-Estrada

Net primary production is a term used to describe how much carbon the phytoplankton community incorporates into their cells via photosynthesis, minus the amount of carbon released through respiration. It can be limited by the supply of nutrients and sunlight in the water column, both of which vary over space and time across the ocean. Those needed in large amounts like phosphate, nitrate, and silicic acid, are called macronutrients . Other nutrients are needed in comparatively smaller amounts and are called micronutrients, which include many trace metals like manganese, iron, cobalt, nickel, copper, zinc, and cadmium.

Phytoplankton are so good at gathering required nutrients from seawater that they can run out. When that happens, their growth is slowed or stops and their composition changes in ways that affect export. They can become sticky, aggregate and sink quickly, or become poor food sources for their predators, reducing grazing and the amount of export by zooplankton that eat phytoplankton and produce fecal pellets. In these ways and others, the nutritional status of the phytoplankton can change how efficiently the biological pump moves carbon from the surface ocean to the deep sea.

As part of the EXPORTS program, we are identifying how macronutrient and micronutrient availability affects phytoplankton community composition and their physiological state to understand how these factors drive phytoplankton carbon through the biological pump.

In 2018, our team sailed in the North Pacific, a region with highly stratified waters with minimal nutrient input. Now in 2021, our team is sailing in the North Atlantic, a seasonally stratified region where eddies move nutrients from the ocean depths to the surface through a process called upwelling. We are using a combination of ultra-clean trace metal chemistry combined with the tools of molecular biology to understand how phytoplankton are responding to the changes in nutrients in their environments. 

Our team is trying to understand how different organisms respond to the changing nutrients? Working with the rest of the EXPORTS science team, we will combine measurements of carbon export, and ultimately the amount of carbon dioxide sequestered from the atmosphere.

 

Our Three “Hour” Tour

By Ken Buesseler, Woods Hole Oceanographic Institution /NORTHERN ATLANTIC OCEAN/

For those of us who grew up watching Gilligan’s Island, we all know the fateful story of the “three-hour tour.”  Well, as this oceanographer knows, that TV storm is not that different from the weather we are facing out here in the North Atlantic on the research vessel Sarmiento de Gamboa.

An aerial view of the R/V Sarmiento de Gamboa (foreground), positioned close to the RRS James Cook (middle) and RRS Discovery (back) at a meet up point in the northeast Atlantic. Credit: Marley Parker
An aerial view of the R/V Sarmiento de Gamboa (foreground), positioned close to the RRS James Cook (middle) and RRS Discovery (back) at a meet up point in the northeast Atlantic. Credit: Marley Parker

Our story takes significantly longer than three hours, as we set off at the beginning of this month on a three-week tour – 18 days to be more exact. Add in three years of planning the science mission, plus two years of coordinating three research vessels to rendezvous at the same time and location, one year of COVID-related delays, two weeks of quarantine in a hotel in Vigo, Spain, and you get the idea of how much time and effort we expended before we even left the dock.

Our mission is to gain a better understanding of the mysteries of the ocean’s twilight zone. The twilight zone refers to the vast layer of the ocean below where sun penetrates and above the abyssal dark ocean. At the surface, marine plants, or phytoplankton, convert carbon dioxide into organic matter just like plants on land. This organic carbon is the food supply eaten by zooplankton, or microscopic animals, and then fish and other animals up the food chain. As they eat, they expel fecal matter – yes, poop – which attaches to other particles in the water, and forms what scientists call “marine snow.” Typically, only a small fraction of the marine snow makes its way downwards through the twilight zone to the deep sea.

The reason we need to pay close attention to marine snow is that it plays an important role in climate regulation. Marine snow carries carbon with it and settles into the deep ocean, which influences the levels of carbon dioxide in the atmosphere and thus affects our climate and weather on land.

Bow of the R/V Sarmiento de Gamboa crashes through waves during rough seas during one of many stormy days. Credit: Marley Parker
Bow of the R/V Sarmiento de Gamboa crashes through waves during rough seas during one of many stormy days. Credit: Marley Parker

So we are out here to capture the marine snow fall, to better understand its variation, and predict how it will change in the future.  

Mother Nature has her own agenda. 

Two days after sailing northwest from Vigo, Spain, we reached our study site where two vessels, the RSS Discovery and the RSS James Cook, have already started sampling. 

So far so good.

After 36 hours, winds pick up to 50 knots and seas quickly swell to 15-20 feet or more.  The Captain makes the call to stop all science operations. At that point, we double-check all the ropes, ratchet straps, and bungies holding down our expensive scientific gear in the lab, feel gratitude for having strong, seafaring stomachs (or at least I do) and wait.

With the hatches locked, we hear and feel waves crashing into the ship. We wonder if the rolls can get even larger than 30 degrees. We head 100 miles south to avoid the worst of the storm. And we wait.

We chat with each other, read books, and watch videos. We go to normal meals in the mess, amazed that the cooks on board can still prepare a full, hot meal in these conditions. We use one hand to steady our plates, the other hand to hang onto the table. Occasionally we manage to shove some food in our mouths.

Another shot of R/V Sarmiento de Gamboa from the bridge during the storms. Credit: Marley Parker
Another shot of R/V Sarmiento de Gamboa from the bridge during the storms. Credit: Marley Parker

After four days, the weather improves enough to allow us to sample again.

We enjoy 36 hours of continuous science operations. At one point, we bring all three large vessels together (a few ship lengths apart) to compare results from common instruments used on each ship. 

Our ship carries new technologies to add “eyes in the twilight zone” using different on-board and robotic imaging systems that we deploy for autonomous missions. 

A second ship carries out survey work, following and crossing circular tracks that the ocean currents make out here called eddies. 

The third ship stays faithfully in the center, following the same patch of water, focused largely on marine biological processes and their chemical and physical controls. They deploy unique devices to capture the marine snow fall directly. 

Quite simply, we need to work together to put all the puzzle pieces together. But Mother Nature has more in store for us.   

We get hit a second time with 48 hours of waves and winds.  This time we head north to avoid the worst of it. 

And again, I find myself sitting and waiting, not stranded on an idyllic island like Gilligan and the party of the Minnow (the professor character always appealed to me the most) but stuck on a 230-foot research vessel, waiting to get back to the work we came here to do. 

Despite the rough seas, I love my job. The understanding we gain by visiting these remote and sometimes stormy places, makes up for the discomfort and effort it takes to be here.

Captain Miguel Ángel Menéndez Pardiñas (left) and co-lead scientist Ken Buesseler (right) discuss operations on the bridge. Credit: Marley Parker
Captain Miguel Ángel Menéndez Pardiñas (left) and co-lead scientist Ken Buesseler (right) discuss operations on the bridge. Credit: Marley Parker

As we weather the final dregs of the storm, I can’t get the theme song from Gilligan’s Island out of my head “just sit right back, and you’ll hear a tale…

I’ll certainly have some tales to share.

We’ve already been sharing data between the ships. In less than a week, we will pack up our gear, and bring our samples and data back to the Woods Hole Oceanographic Institution.  We will share our science stories, as well as stories of raging seas, and the challenges we face just to do our jobs.

All these experiences remind us of what we can and can’t control as we work to better understand this ocean planet.

The Hunt for the Right Eddy

By Zachary K. Erickson, NASA Goddard Space Flight Center / GREENBELT, MARYLAND /

The ocean is full of eddies – swirling water masses that are the ocean equivalent of hurricanes. In comparison with their atmospheric counterparts, eddies are smaller, longer-lived, and far more numerous: at any given moment, well over 1,000 eddies exist throughout the global ocean, with diameters typically between 30 and 200 miles (about 50 to 300 kilometers). On average they last for one or two months, but about 20% last for four months and a small fraction can last for over a year.

Several eddies dot the ocean off the coast of Ireland and Scotland. Waters at the center of the eddies can either be high or low in phytoplankton biomass (green or blue colors). For the full image, see https://oceancolor.gsfc.nasa.gov/gallery/568/. Photo Credit: Norman Kuring/NASA GSFC.
Several eddies dot the ocean off the coast of Ireland and Scotland. Waters at the center of the eddies can either be high or low in phytoplankton biomass (green or blue colors). For the full image, see here. Photo Credit: Norman Kuring/NASA GSFC.

We decided to locate the North Atlantic EXPORTS field deployment within an eddy because eddies tend to trap water masses in their core. This means that if we put multiple instruments in the eddy core, we can be pretty sure that they will stay close together. In a campaign involving dozens of individual instrument platforms, it is much easier to organize and understand the measurements when they are all near each other! Additionally, if the eddy core primarily contains trapped water, we can interpret changes in the water properties – such as a decrease in nutrient levels or an increase in biomass – as resulting from biological processes happening within the eddy, rather than from other external factors.

The main way we look for eddies is by using data from a constellation of satellites continuously orbiting the earth. These satellites use radar to very precisely measure the height of the ocean surface. On a global scale, these measurements help scientists track sea level rise. Locally, we use these measurements to track eddies, which either look like hills or valleys in sea surface height depending on if they are rotating in a clockwise or counterclockwise direction (in the northern hemisphere; this is flipped in the southern hemisphere). A sea surface “valley” is directly analogous to the low pressure associated with hurricanes, which rotate in a counterclockwise direction (in the northern hemisphere).

 On a clear day, we got this fantastic satellite image of high biomass waters (red colors) moving around the eastern edge of our eddy. Arrows show the direction of the currents implied from sea surface height data.
On a clear day, we got this fantastic satellite image of high biomass waters (red colors) moving around the eastern edge of our eddy. Arrows show the direction of the currents implied from sea surface height data.

Once we find an eddy, we try to predict how long it will last. For the EXPORTS field deployment, it was important to pick an eddy that was going to last for at least a month, which is the length of the main part of the deployment. We look at data from years past to identify characteristics of eddies that are long-lived, such as their size (bigger is better) and how symmetrical they are (circular eddies are better than oblong shapes). We also use numerical simulations to drop “particles” in a given eddy and track whether or not they appear to be trapped within the center or if they escape from the eddy. From these we generate a prediction for each eddy of how long, and how well, it will trap water masses within its core. For this experiment, we want a long-lived eddy that effectively traps water!

Positions of different platforms (most of them) during the EXPORTS field deployment! The ships and gliders can be steered through the water and also measure subsurface water properties, but the drifters just go with the flow. Some of the drifters have even been kicked out of the eddy (to the south)! On average, the sea surface height of the eddy is 10-15 cm higher than what we would normally expect at this location. Credit: NASA
Positions of different platforms (most of them) during the EXPORTS field deployment! The ships and gliders can be steered through the water and also measure subsurface water properties, but the drifters just go with the flow. Some of the drifters have even been kicked out of the eddy (to the south)! On average, the sea surface height of the eddy is 10-15 cm higher than what we would normally expect at this location. Credit: NASA

After we have a small number of candidates, we need measurements from instruments in the water. It is very important to know what the eddy looks like beneath the surface, below where we have data from satellites. The EXPORTS project is centered around measuring carbon “export”, or how carbon locked up in biomass is transported from the ocean surface to the deep ocean interior. So, it is important that our chosen eddy effectively trap water masses down to about a thousand feet (about several hundred meters). 

Initially, we get these measurements from ocean gliders, autonomous platforms that adjust their density to move up and down within the upper 0.6 miles (about 1 kilometer)  of the water column, taking measurements of temperature, salt concentration (salinity), oxygen levels, and biomass along the way. Three gliders were deployed in early April, and these measurements were supplemented by data from three research ships in May, as well as the aforementioned dozens of platforms deployed within and around the eddy.

 Throughout the course of the field deployment, a group of scientists on “shore duty” (including numerous institutions such as NASA Goddard Space Flight Center, University of Washington, University of Rhode Island, CalTech, University of California Santa Barbara, Woods Hole Oceanographic Institution, and the National Oceanography Centre in the United Kingdom)  use all of these data to track daily changes in how our chosen eddy is evolving over time, making sure that we center measurements on the core mass of trapped water in the center. There’s still a chance that the eddy will break up, but two-thirds of the way through the mission, all evidence points to our having made a good choice in picking an eddy that will stay present at least throughout the course of this field deployment, and perhaps for many weeks or months afterwards!

What It’s Like to Quarantine Before a Field Campaign

By Sara Blumberg, NASA’s Goddard Space Flight Center and Inia Soto Ramos, Universities Space Research Association / GREENBELT, MARYLAND /

Pandemics can change the plans of nearly everything, including ocean research.

That’s exactly what happened with EXPORTS. In 2019, the original North Atlantic Expedition along with its active research projects were cancelled.

Despite the setback, the group kept meeting and sharing results. With strong support from our funding agencies, the EXPORTS team started looking for options to do the second expedition.

After a lot of challenges, the idea of a field campaign started to become a reality. In April, researchers from all over the world landed in England to begin two weeks of quarantine before setting out for the seas.

Here’s what happens when a group of scientists are asked to isolate:

1. COVID Testing

So many tests! Scientists had to ensure regular negative test results before they could get on the boat. The result? Three ships of crew all COVID free!

Video caption: Instructions on how to take a COVID test during quarantine. Video credit: NASA EXPORTS field campaign

2. Cheese making!

The daily supply of milk at the hotel was overwhelming for our scientists, so ideas and recipes started overflowing the group chat! One of the clever ideas was to use some of the pantyhose. Yes, pantyhose have a use in oceanography.


Pantyhose are used to hold the filter pads that go in liquid nitrogen to keep them very cold until samples get processed. Dewars, a double-walled flask with a vacuum between the walls, have a metal container that sometimes issues when opening and closing.  We found that the filter pads can escape and fall in the bottom of the liquid nitrogen bottles. To prevent this ,we put the histoprep (with filters) capsules inside the pantyhose leg section and tighten it with a string. This  keeps the filters safe, making it easier to pull out.

After a bit of online DIY searching, EXPORTS researcher Sue Drapeau debuted her hotel-quarantine-made paneer cheese. While that surely made good use of the extra milk, it surely sparked a few complaints of spoiled milk smells around the hotel!

A look at some of the cheese made during the EXPORT quarantine.
A look at some of the cheese made during the EXPORT quarantine. Credit: Sue Drapeau

3. Knitting Hats

Biological oceanographer Colleen Durkin had a quarantine goal in mind – knitted hats. During her two weeks of isolation she knitted a hat for each member of her team. She dubbed them the “Mesopelagic Fade” and were all ready when they set sail. In knitting jargon, a “fade” is a method for transitioning across a color gradient. The mesopelagic is the depth gradient that we are studying.

Tweet caption: Researcher Colleen Durkin’s finished hats for her team. Credit: Colleen Durkin 

4. Crafts

To bring everyone together, researchers spent their time making cards, painting, and doing trivia nights. They also engaged in a virtual Plankton Action Drawing Workshop with Cynthia Beth Rubin. Cynthia is a digital/analog artist, and has been drawing plankton with the Menden-Deuer Lab for many years and incorporating it into her own work.

One of the many artworks created during the EXPORTS quarantine. Credit: Jordan Snyder
One of the many artworks created during the EXPORTS quarantine. Credit/artist: Jordan Snyder
Artistic drawings stemming from taking a phytoplankton drawing class during the EXPORTS quarantine.  Credit/Artist:  Nick Baetge
Artistic drawings stemming from taking a phytoplankton drawing class during the EXPORTS quarantine.
Credit/Artist: Nick Baetge

 

 

 

 

 

 

 

 

5. Weather-watching

Scientists spent a lot of time looking out of their windows. The weather ranged from snow sightings, beautiful spring days and a continued question of when the quarantine would be over. 

For the researchers, the quarantine impacted everyone differently. Stay tuned for more personal accounts of what it was like to do field work while away from loved ones.

Researchers enjoying the views of isolation for two weeks while algae photosynthesize! Credit: Lee Karp-Boss
Researchers enjoying the views of isolation for two weeks while algae photosynthesize!
Credit: Lee Karp-Boss

NASA Sets Sail to Study the Ocean Twilight Zone

By Sara Blumberg, NASA’s Goddard Space Flight Center and Inia Soto Ramos, Universities Space Research Association / GREENBELT, MARYLAND /

When we talk about climate change, we tend to think of lush forests with giant trees that passively trap carbon dioxide from the atmosphere and use them for food in a process called photosynthesis.

On May 13, 2021, following some rough weather in the northeastern Atlantic, EXPORTS researchers aboard three ships (Discovery, James Cook, and Sarmiento de Gamboa) were taking advantage of sunny weather and calmer seas to collect samples and hope for good satellite overpasses.

The ocean might not have giant trees, but it has microscopic, little plants known as phytoplankton that do the same thing. 

In a rapidly changing planet, carbon continues to play a big role, especially in altering our ecosystems. The NASA-led field campaign Export Processes in the Ocean for Remote Sensing (EXPORTS) wants to learn how this chemical element is impacting the ocean, especially in a place right beneath its surface called the “twilight zone.”

This past month more than 50 scientists from all over the world have been conducting large-scale studies from the surface of  the twilight zone in the Northern Atlantic.

So why is the twilight zone so important? In short, researchers don’t know much about it.

Carbon dioxide dissolves in the ocean, making it available to hungry phytoplankton that, in the presence of sunlight, will bloom. In some cases, these blooms will paint surface waters in beautiful shades of green and brown that can be observed even from space!

While phytoplankton keep getting healthy and chubby, other sea creatures such as zooplankton will feast on them. Eventually, carbon is incorporated in the ocean food chain and is released in the form of organic matter via decay (think feces)!

Phytoplankton seen under the microscope! Credit: Laura Holland
Phytoplankton seen under the microscope!
Credit: Laura Holland
A close-up view of zooplankton and detrital material living in the Twilight zone.  Credit: Deborah Steinberg
A close-up view of zooplankton and detrital material living in the Twilight zone.
Credit: Deborah Steinberg

 

 

 

 

 

 

 

 

Some of that decay material gets reused within the surface ocean, while others will sink to where sunlight fades –the twilight zone! During this process, carbon can get reused, ride with the currents, go up and down the ocean along with creatures that migrate along the water column, or simply make it to the seafloor where it may be stored for years to millennia.

Understanding how much carbon is taken up and exported to the deep ocean is a key question for understanding climate change and improving model predictions.

Back in 2013, a group of oceanographers and scientists alike met at the University of California, Santa Barbara and drafted a science plan for a field campaign mission to study how carbon moves from the ocean surface to seafloor.

 That science plan was published in 2015 after a rigorous and extensive scientific review.  EXPORTS became a reality in 2018 when 18 projects, dedicated to address the science plan questions, were funded by the NASA Ocean Biology and Biogeochemistry and National Science Foundation. 

 The first phase of the EXPORTS project was a successful field campaign in the North Pacific Ocean in 2018 led by a stellar team of scientists, two University-National Oceanographic Laboratory System  vessels (R/V Sally Ride and R/V Roger Revelle) and state of the art technology.

Video caption: Dive & Discover Expedition 17 involves collaboration between multiple organizations, including Woods Hole Oceanographic Institution’s Ocean Twilight Zone project, the National Science Foundation, and NASA Earth Science.
Video Credit: Marley Parker © Woods Hole Oceanographic Institution

On April 22, 2021, the EXPORTS North Atlantic Expedition began with two research vessels named the RRS Discovery and RRS James Cook. The ships also deployed gliders, drifters, moorings; other edge-cutting oceanographic instrumentation began field preparations.

Deployment of the Wire Walker, an instrument that sampled up and down the water column while drifting with the currents and generating its power by waves.  Credit: Deborah Steinberg
Deployment of the Wire Walker, an instrument that sampled up and down the water column while drifting with the currents and generating its power by waves.
Credit: Deborah Steinberg

The EXPORTS team was joined by Woods Hole Oceanographic Institution’s ocean twilight research program onboard the Spanish vessel R/V Sarmiento de Gamboa. The galore of technology is represented by a diverse science crew that will study this region for about 30 days. Research will range from microscopic creatures, such as viruses and bacteria, to the dynamic circulation and biogeochemical processes driving the carbon cycle during the spring blooms in the North Atlantic ocean.

Follow along as NASA details their journey, which started with two weeks of quarantine. 

NASA EXPORTS unloading technology for the field campaign. Credit: Filipa Carvalho
NASA EXPORTS unloading technology for the field campaign.
Credit: Filipa Carvalho

SnowEx: Little Blogs from the Prairie – Part 2

Madeline Beck, Undergraduate Student in Environmental Science, Montana State University

Being part of a NASA research team is an exciting experience! Knowing our work will correspond with further research endeavors and help validate remotely sensed measurements makes us feel like part of a greater effort and team.

The research site is in a beautiful part of Montana. It feels remote and reminiscent of earlier times, and it is a new area of science for most of us. Being a part of larger research is always exciting and offers opportunities to learn and expand on our own knowledge and being able to do so in such a different, harsh environment offers new challenges that we must work through.

The exposed landscape and high winds of prairie environments create drifts, buried ice and other challenging features for the SnowEx team to investigate. Credit: GEOSWIRL / Montana State University
The exposed landscape and high winds of prairie environments create drifts, buried ice and other challenging features for the SnowEx team to investigate. Credit: GEOSWIRL / Montana State University

When we show up to do research, we often must adapt to the day’s weather conditions. While some field days are sunny and warm with a light breeze, others have been frigid with wind too loud to hear others speak. This is one of the most difficult, but most gratifying, parts of fieldwork and causes you to think on your feet. Our field duties include digging snow pits and taking the full suite of pit measurements, walking snow-depth transects with a probe and GPS unit, assisting other students with UAV flights, and downloading data from the many sensors.

While many of us in the class had dug either snow or soil pits in the past, none of our previous experience was able to prepare us for the snow we found at the research site. “Ice” is a better word for the “snow” that we found, and even a day after new snow fell at the site, the snow became hard and solid. We also found ice layers in the snowpack from periods of melt and refreeze. Digging the pits themselves, although all relatively shallow, proved to be back- or shovel-breaking work! It was interesting coming from a background where I had dug snow pits for research or recreational use, and seeing how different the layers and characteristics of snow pits at a plains research site could be.

Depth transects were an informative way to see how variable snow accumulation and retention were across the different field types. In areas of high stubble, snow was retained longer and in greater amounts. However, field’s location was also important due to a windbreak on the western edge of the field that kept snow from being blown around so much. Additionally, helping other students and researchers with UAV flights was beneficial, and although I fly UAV’s frequently for my own research, the research site’s harsh environment added more factors for the flights to go wrong, and quick troubleshooting was required to keep operations going. Lastly, learning to operate scientific loggers and make sense of the data collected was a great skill to gain. Seeing how raw data is collected and transformed to make sense of the readings was beneficial because we could then connect the data we had collected to the environment we had seen in person.

Learning in a field environment is drastically different from a classroom setting and helps you learn to adapt quickly and efficiently. In a classroom, you can plan in extreme detail, but something always seems to go against the plan while at a field study. However, having the skills to adapt and remain levelheaded is something you can only pick up through conducting research, and it is a skill that takes time to acquire. This project has helped me better plan for the unexpected and not let malfunctions impede my ability to continue carrying out research. It has also taught me the importance of working with others across different academic and scientific disciplines and that every individual brings a unique and beneficial perspective to the table. I know the ability to develop these friendships and contacts so early in my own academic career will benefit me for years to come and will help me become a better researcher myself. Being a part of the NASA SnowEx team has been an influential and enjoyable opportunity, and I look forward to seeing where these experiences will take me in the future.

Max Smay, Undergraduate Student in Earth Sciences, Montana State University

Being part of the NASA SnowEx project has been a very cool and unique experience compared to classes I have taken. It is cool to know we are part of a larger effort affecting real-world applications. Learning how this type of work takes place in the “real world” has also been very valuable to me and motivated me to find similar applied, hands-on work after getting my degree.

The days in the field are coordinated and busy, but they have not been very stressful or overwhelming. Our team seems well suited to assigning the day’s tasks and everyone seems to be having fun. My favorite parts of the field days have been reconvening and talking about what difficulties and successes everyone had in the field, and learning about new ways to collect and process data. When we’re done collecting data, I am usually dog tired and have some relaxing evenings as I appreciate being out of the cold. Learning in this environment is great compared to a classroom: first because there is much more autonomy, and second because we get to be outside and active.

With COVID, it has been harder to make connections and friends in the classroom, so this project has been a welcome way to connect with peers in a more active environment. I have been very appreciative that I get to take this class because of this, and the reasons mentioned above!

Mitchell Burger, Undergraduate Student in Earth Sciences, Montana State University

Being a part of a NASA research team is an amazing opportunity to get experience collecting data in the field and learn about the intricacies of a large-scale research project like SnowEx. It has brought us out to a part of Montana that we may not have seen before or thought about if we were to drive through the area. After some field days at the CARC in Moccasin, I have a new respect for and curiosity about prairie landscapes and their processes. Before going to the study site, I thought collecting data there would be straightforward and simple, but quickly learned it was anything but simple. It has been so cool to see the effects that wind has on snow cover in this environment and think about its repercussions for the hydrology of the area.

A day at the CARC begins with a nice drive from Bozeman to the center of Montana, where the CARC is located. Once there, we go over the plans for the day, which were settled upon in class earlier in the week. We all then go out and complete our tasks, such as digging snow pits, checking on the soil moisture sensors, doing snow depth transects, and helping with UAV flights. Doing snow depth transects has been my favorite part of the fieldwork, as I get to see the variability of snow depth across the different crop types firsthand. Once everything is done for the day, we all caravan back to Bozeman.

Learning out in the field is different from the classroom in that we learn from what is around us and talk about processes that are occurring while we are there. For example, before we dug our first snow pits on “the berm”, we discussed why it was covered with so much debris and how the debris may have increased snow melt until it was covered with snow again. When digging snow pits in any location, I always try to learn something new from the snowpack. In this environment though, we encountered some very unique snowpacks, and I think it forced many of us who are used to mountain snowpacks to step out of our comfort zones and ask new questions.

Caitlin Mitchell, PhD student in Land Resources Environmental Sciences

It is interesting to try to distinguish between working on a NASA research team and any other research team. Some noteworthy items are the safety forms and instruction protocols, as well as the data record-keeping guidelines. The latter is interesting because it’s a constant reminder that the data we collect is part of a greater dataset – one being culled for ease of transcription and interpretation by project members outside of the group we work with in the field. It creates a sort of data language that we all share. Curating and documenting data products is also a focus of my primary research project (NSF MT EPSCoR CREWS). With “big data” becoming more commonplace, it makes sense that these items, or aspects of them, are a focus across different government-funded research projects.

A day in the field on the NASA SnowEx project for me, as a student with additional motivations to investigate snow in prairie environments, includes taking samples of snow at points where we map snow depth across the site and in snow pits we dig. I am interested in the water isotopic values of the snow and how they change over time and space in a prairie environment, with the motivation to better understand snow contributions to soil water for crop uptake and nutrient cycling. The samples I collect are analyzed in the lab isotopic values of the hydrogen and oxygen atoms that make up the snow water molecules. The variation in these values tell us about the origin of the water molecule as well as transformation processes it may have undergone, such as sublimation.

My favorite part of the research so far has been seeing and feeling the changes in snow depth and density along these transects as I walk them. I look forward to placing the water isotope value results at the GPS locations they were sampled to see if and how the snow is changing chemically across this landscape. I have always been a more visual learner, so witnessing things unfold in real time and experiencing them in the field really resonates with me and enhances my understanding of what is going on in the environment. Experiential learning opportunities like this one, and like most research that involves field sampling and collection, are incredibly valuable for building relationships among the people involved, as well as building a robust skill-set from accurate data collection to interpretation and understanding for each individual.

SnowEx researchers Caitlin Mitchell and Marika Feduschak investigate the physical characteristics of the shallow prairie snow. Credit: GEOSWIRL (Geospatial Snow, Water & Ice Resources Lab) / Montana State University
SnowEx researchers Caitlin Mitchell and Marika Feduschak measuring the physical characteristics of the shallow prairie snow. Credit: GEOSWIRL (Geospatial Snow, Water & Ice Resources Lab) / Montana State University

Ross Palomaki, 2nd year PhD student in Earth Sciences

I have really enjoyed working at the CARC SnowEx field site. Most of my personal and research experience with snow has been in the mountains, and this prairie site has offered a new perspective on snow as a water resource. Seeing and measuring the drifted snowbanks in person has prompted some interesting discussion on spatial variability and sensor resolution.

There is not really a “typical” day at the CARC – most of our activities are dictated by the weather. I am part of the unmanned aerial vehicle (UAV, or drone) operations team, and our Structure-from-Motion photogrammetry (using photography to map distances between objects) flights have been shut down numerous times by wind and blowing snow. It’s a great feeling to get a clear and (somewhat) calm day up there and complete all the planned flight missions.

I am looking forward to the upcoming data analysis, especially the opportunity to compare our site to the sites in the mountains. Hopefully we will have the opportunity to meet our fellow SnowEx teams in person someday.