Burrowing into the Arctic’s Carbon Past and Future

Posted on by .
The Permafrost Tunnel provides a look back in time, allowing for research into the frozen ground of interior Alaska. Credit: NASA/Kate Ramsayer

The Permafrost Tunnel provides a look back in time, allowing for research into the frozen ground of interior Alaska. Credit: NASA/Kate Ramsayer

by Kate Ramsayer / FAIRBANKS, ALASKA /

“What we’re going to do is walk back in time,” said Matthew Sturm, standing in front of a doorway that led into a hillside north of Fairbanks, Alaska.

Through the doors was a tunnel that provides access to the Alaska of 40,000 years ago, when bison and mammoths foraged in grassy valleys. Now, however, the grasses and the animal bones are frozen in the ground in the Permafrost Tunnel.

The tunnel, run by the U.S. Army’s Cold Regions Research and Engineering Laboratory, was dug in the 1960s and is the site of much research into permafrost—ground that stays frozen throughout the year, for multiple years. Sturm, a professor and snow researcher at the University of Alaska, recently led a group with NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) to the site. The walls of the tunnel expose the silt, ice, and carbon-rich plant and animal matter that has been frozen for tens of thousands of years.

“It’s a legacy of the Ice Age,” Sturm said. Roots of long-buried grasses hang from the ceiling, in a few places bones of Pleistocene mammals are embedded in the wall.

Scientist in a permafrost tunnel

Matthew Sturm points to some grasses and sticks that were buried during the Ice Age and frozen in the ground and now exposed in the ceiling of the permafrost tunnel. Credit: NASA/Kate Ramsayer

What will happen to the carbon contained in permafrost in the Alaska interior and elsewhere in the northern latitudes is a major question for NASA’s ABoVE campaign, which is studying the impacts of climate change on Alaska and northwestern Canada. Temperatures are rising in the Arctic region, which means permafrost is thawing at faster rates—and when it thaws, it releases carbon dioxide or methane into the atmosphere.

One ABoVE project is taking steps to monitor the temperatures of the permafrost across Alaska to see how far below the surface it is frozen and whether the temperatures of the soil layers are changing.

“We’ll get temperature data across large territories to supplement the existing data,” said Dmitry Nicolsky, with the University of Alaska, Fairbanks. Most of the existing data is along easy-to-access roads—but there aren’t many roads in Alaska. Nicolsky and his colleagues are working with researchers at USArray, which is establishing earthquake-monitoring stations across the state. Those crews are also drilling about 20 boreholes for thermometers this year, with more planned.

Man working outside

Dmitry Nicolsky demonstrates how sensors are inserted into a borehole to measure the temperatures of layers of soil and permafrost at different depths. Credit: NASA/Kate Ramsayer

Nicolsky has been getting the instruments ready for deployment. Crews will install lines that have six temperature sensors at six different depths, from just below the top mossy layer to more than 6.5 feet below the surface. They’ll take readings several times a day for three to five years to help the scientists get a more complete picture of how temperatures in Arctic soil are changing.