In Arctic Tundra, It’s Getting Easy Being Green

Posted on by .

A view of tundra and native spruce trees in the valley. Credit: NASA/Katy Mersmann

by Katy Mersmann / DENALI NATIONAL PARK, ALASKA /

As I walk up the Alpine Trail in Denali National Park, I can see the vegetation changing before my eyes. Deciduous plants, like willows and smaller shrubs, start huge, as tall as my head and shoulders. But as the trail leads up, and as the altitude grows, the vegetation shrinks.

Over the course of the roughly 1,300-foot elevation gain, the plant life gets shorter and shorter until suddenly it’s almost gone—we’ve reached the tundra. By climbing up the side of this hill, we’ve mimicked traveling north into the colder parts of the Arctic, reaching the tundra much faster.

Tundra is like the Arctic’s desert: an expanse of treeless land with little available water. Most water in the tundra is below the ground in a layer of continuously frozen soil known as permafrost. Between the tundra’s low temperatures and the permafrost, it’s not a hospitable location for much plant life.

In some places, the trail bisects the hill, with large deciduous plant life on one side and tundra on the other. Credit: NASA/Katy Mersmann

On the tundra, Peter Griffith, project manager for the Arctic Boreal Vulnerability Experiment (ABoVE), points out the same shrubs we encountered lower down, although here, instead of towering over our heads, they’re only a few inches above the ground.

But that could be changing. It’s one element of the ABoVE team’s research: understanding how native Arctic vegetation responds to a warming climate.

Griffith describes the shrubs as “ready and waiting to march up the mountain.” They’re opportunistic plants, and all it takes is a little warmth and thawed ground for them to dig in and start growing larger, a process known as “shrubification” and one of the causes of the greening trends seen from long-term satellite records.

Shrubs that grow as tall as a person further down the hill carpet parts of the tundra, waiting to take advantage of slightly warmer temperatures and more available water. Credit: NASA/Katy Mersmann

As greenhouse gases change Earth’s climate, the Arctic is warming much faster than the rest of the world. And the changes are staggering. Permafrost is thawing, and the shrubs aren’t the only ones taking advantage. Within the soil, bacteria are growing and beginning to metabolize organic matter that’s been frozen in permafrost for thousands of years.

As they feast, bacteria release carbon dioxide and methane, which are released into the air. Plants like shrubs use carbon dioxide to grow even faster. In some ways, it seems like a race.

Will the bacteria respire more carbon dioxide than the growing plants can absorb? At some sites, that already seems to be the case. How this race plays out across the Arctic is another question the ABoVE team is investigating.

Using measurements of carbon dioxide and methane taken from flux towers sitting directly on the tundra, to instruments mounted on airplanes and satellites in low Earth orbit, NASA scientists are finding out how the land ecosystem influences the atmosphere in a greening Arctic, and what the consequences are for not only the Arctic but also the world.