A Scavenger Hunt for Fire

The first real taste of smoke comes shortly after 1 p.m. from what the team dubs the Half Pint Fire. It’s near the Texas-Louisiana state line. The plume is visible here near the wingtip. Credit: NASA/Joe Atkinson

by Joe Atkinson / SALINA, KANSAS /

Time for a change of scenery.

After nearly a month flying missions out of Boise, Idaho, to sample smoke from big wildfires in the western U.S., the Fire Influence on Regional to Global Environments and Air Quality, or FIREX-AQ, is pulling up stakes and moving to America’s heartland — Salina, Kansas, to be exact.

NASA’s DC-8 flying laboratory, the primary platform for the joint NASA-NOAA airborne science campaign, lands at the Salina Regional Airport Aug. 19.

From here, the mission will spend the next couple of weeks targeting smaller prescribed and agricultural burns in the south and southeast. These fires, which help to manage fuel loads and  reset plant succession, don’t put out as much smoke as the wildfires out west, but can still have a dramatic effect on air quality and weather.

Because the smoke from these fires is poorly represented in emission inventories and not always well visualized by satellites, it’s a prime target for FIREX-AQ researchers, who want to better understand its chemistry and behavior.

After an Aug. 20 event to inform the community and local media about the mission, the team gets down to brass tacks. Researchers had hoped one of their first missions out of Salina would target a prescribed burn in the Blackwater River State Forest in Florida’s panhandle, but soggy conditions have prevented that burn from happening. It’ll have to wait.

At an event to inform the community about FIREX-AQ, a TV news station from Wichita interviews mission scientist Jim Crawford. Credit: NASA/Joe Atkinson

Jim Crawford, FIREX-AQ mission scientist from NASA’s Langley Research Center in Hampton, Virginia, is hungry to get this new phase of the campaign underway, though. At the first Salina forecast meeting, he and the team decide to waste no time. They’ll fly the next day and let the ground team guide them to areas where small fires might be burning. It’ll be an opportunity to work out some kinks.

“This is a scavenger hunt profile that we’re flying,” Crawford says.

The event draws several school groups and a number of folks who are just curious to find out a little more about what NASA and NOAA are doing in town. A young aviation enthusiast drives six hours from Denver just to see the DC-8 with his own two eyes. Here, mission scientist Joshua “Shuka” Schwarz from NOAA’s Earth System Research Laboratory in Boulder, Colorado, talks to people on the DC-8. Credit: NASA/Joe Atkinson

The Search Begins

At the morning pre-brief for the Aug. 21 flight, Crawford unveils the flight plan, which will take the DC-8 on a roughly oval path that will cover ground from just over Lubbock, Texas, at its westernmost point to southern Illinois at its easternmost point. Based on information from satellites and models, fires are likely in the Oklahoma panhandle and northern Texas. Mission forecasters also expect to see agricultural fires in areas along the Mississippi River.

Following a long forecast meeting, the team decides to hunt for small prescribed and agricultural burns during its first flight for phase two of FIREX-AQ. Credit: NASA/Joe Atkinson
DC-8: The DC-8 sits on the tarmac at Salina Municipal Airport in the minutes before takeoff. Credit: NASA/Joe Atkinson

Everyone heads out to the tarmac and boards the DC-8. Researchers make final checks to their instruments and strap in. All said, there are 43 souls on this flight. It’s just after 10 a.m. and the plane is barely off the ground when Crawford’s voice chimes in over the headset.

“It’s not too soon to start looking for fires, folks,” he says.

He promises an award to the person who spots the most fires.

Early going is discouraging. A small plume in Kansas is deemed unworthy of measurement. Twin plumes a little farther down the flight path look interesting, but their proximity to windmills means it’ll be difficult for pilot Greg Slover of Langley to maneuver the DC-8 low enough for the instruments to make good measurements.

Over the panhandle of Oklahoma where the forecast team had anticipated fires to materialize, none do.

It’s 11 a.m. and the plane is somewhere over northern Texas — still no fire.

“We’re an hour in and batting zero,” Crawford says.

Finally, Fire

It’s almost noon before someone spots a promising plume in Texas between Lubbock and Wichita Falls.

This one is a surprise. Satellites haven’t picked it up. But it actually reinforces the reasoning behind this second phase of the campaign. Many smaller fires simply don’t show up in satellite imagery or models.

“This goes back to the question of, are we seeing these small fires?” Crawford says.

The plume turns out to be from an active, named wildfire that people on the ground are fighting. The team chooses not to fly through it.

Things are about to heat up, though.

The team opts to peel south of the intended flight path and head toward a potential target right on the Texas-Louisiana border, near Shreveport.

This is where things get fun. The plumes for these small fires don’t extended thousands and thousands of feet up like the ones from the wildfires out west, so in order for the scientists to be able to collect measurements with their instruments, Slover and crew have to bring the DC-8 in as low as regulations allow — 1,000 feet.

The air at 1,000 feet is turbulent and hot. The maneuvers to fly through these small plumes at multiple angles involve lots of stomach-churning twists and turns. If you’re prone to motion sickness, it’s not exactly an ideal situation.

But that’s the exact situation that occurs as the flight zeroes in on the blaze near the state line, which the team dubs the Half-Pint Fire.

Cameras on the DC-8 allow you to watch the flight from multiple angles on a laptop or phone. In this screengrab, you can see the shadow of the DC-8 on the ground in the moments before it flies through the Half Pint plume. On the left is an infrared view. The lighter colors are hotter. Credits: NASA

It’s a few minutes after 1 p.m. The DC-8 zooms forward, the treetops clearly visible below. Over the headset, Crawford counts down the approach to the plume:

3, 2, 1

The heat rising off the burning field causes a jolt of turbulence. Readouts on computer monitors spike as instruments register the gases in the smoke plume.

“Oh yeah!” one of the scientists says over the headset.

“Big hit!” says another one.

The acrid smell of the smoke fills the cabin for a few seconds.

This is just the beginning.

The folks on the ground have spotted a potential target near the Mississippi River in northeastern Louisiana. There, the team hits the jackpot. It turns out multiple small agricultural fires are burning in the area.

After a brief respite at a smooth, comfortable altitude, the DC-8 dips back to an altitude where details on the ground are easy to make out. The pilots fly bowtie patterns that carry us through one plume after another. The team hits on a food theme as it names the fires — Lil’ Debbie, Rice-A-Roni, Crawdad, Crawbaby, Gumbo.

Crawford is wearing a prescription patch that staves off motion sickness — an oft used medication in the airborne science world.

“Even with the patch,” he says, “I’m feeling a little woozy.”

A Brief Aside

This is where I take a moment to break the fourth wall and tell you I puked for science.

As we maneuvered through what I’ll call the food fires, I scribbled this in my notebook: 2:10p.m. fires near the Louis./Miss. state line.

After that, I put my head back, closed my eyes and waited for the inevitable.

Shortly after we crossed the Mississippi River into Mississippi and made a beeline for a fire the team would name Jambalaya Jr., I pulled off my headset and made as much of a beeline to the lavatory as the turbulent conditions would allow.

It was an interesting experience given all the maneuvering. I lost track of time and prayed for it to be over soon. And then it was over and I emerged from the lavatory feeling much better. As I got back to my seat, we had just finished zipping through the last plume we would sample—from the Po’Boy Fire.

Thank God.

With some guidance from the team on the ground, we finally hit the jackpot and find multiple small fires blazing on both sides of the Mississippi River in Louisiana and Mississippi. As illustrated on the flight plot here, the pilots fly nauseating low-level crossing patterns through one fire after another. The team names most of the fires after food. Credits: NASA

A Learning Experience

After Po’Boy, it’s over. The pilots climb back to a comfortable altitude and head back to Salina. We never made it to the easternmost point on our original flight plan, but after a start that suggested a fire famine, we found our fire feast in the southeast.

Following the intense flying of the last hour or so, some of the scientists get up and mill around the cabin and chat or eat snacks. Others try to catch a few winks on the trip back to home base.

Carsten Werneke, FIREX-AQ mission scientist from the University of Colorado working at the National Oceanic and Atmospheric Administration’s Earth System Research Laboratory in Boulder, Colorado, is part of the ground team in Salina that’s been directing the aircraft to fires. Over the text chat system that allows scientists on the aircraft to communicate with scientists on the ground, he has an exchange with Crawford:

carsten_: I think we learned a lot today, should be easier next time.

JimC_DC8: Agreed

At the post-flight debrief shortly after the plane lands back in Salina, Crawford shares his thoughts.

He notes that on future flights it would make more sense to fly high and fast to known or suspected hot spots, rather than low and slow, hoping to spot fires along the way, which was the approach during the first part of today’s flight.

He also tips his hat to the pilots for “carving it up” once the fires materialized, not only because they flew successful crossing patterns through the plumes, but also because they were able to get lined up directly on the next targeted fire.

Mostly, Crawford expresses his happiness with how phase two of FIREX-AQ has begun.

“After a slow start,” he says, “we take away from this the pretty optimistic view that we can get a lot of fires.