Finding Nature at Sea During NASA’s S-MODE Field Campaign

By Alex Kinsella, Postdoctoral Investigator at Woods Hole Oceanographic Institution // Aboard the Bold Horizon //

My favorite part of being at sea is the opportunity to see unique parts of the natural world that aren’t accessible from land. My colleagues have done a fantastic job in their blog posts explaining the science that we’ve been conducting during S-MODE, so I want to take this opportunity to describe some of the sights that those of us on the Bold Horizon have been able to enjoy during our field work: birds, mammals, weather, and stars.

A black-footed albatross shows off its sleek wings over the wake of our ship. Credit: Alex Kinsella.

The nature highlight of the cruise for me has been the opportunity to see pelagic birds, which are those that spend most of their lives at sea and are rarely, if ever, seen from land. The most majestic seabird in our region is undoubtably the albatross, which uses an elegant method called dynamic soaring to fly with almost no effort. Throughout the cruise, we have seen many black-footed albatrosses, with as many as six at one time flying back and forth over the wake of our ship. By soaring in loops between a low-altitude track sheltered behind the waves and a higher-altitude track in the open air, they are able to harvest energy from small-scale wind shear to fly for miles without flapping their wings. These birds have been our most constant companions during the day, but we have also been joined overhead at night by many flocks of Leach’s storm petrels, blackbird-sized seabirds which have been in the midst of their autumn migration. Shearwaters, jaegers, murrelets, and fulmars have rounded out the pelagic cast for a wonderful birdwatching experience.

A black-footed albatross soars through the sunset, overlooking our operations on deck. Credit: Alex Kinsella.

The other prominent animal life during the cruise has been the marine mammals, which have sometimes showed up in impressive numbers. The California coast is a region of plentiful food availability due to large-scale upwelling of nutrient-rich deep water driven by northwesterly winds. Pods of Pacific white-sided dolphins have been swimming up to our ship to play in the bow wake, breaching and diving from side to side. We have spotted several fin whales too, which amaze us all and beckon a rush of scientists with cameras in hand. Ocean fronts are often nutrient hotspots, so it’s possible that the whales are searching for the same features that we are. 

One of the many whales that have wowed us with their spouts and dives. Credit: Alex Kinsella.

We have also been enjoying (and enduring) the vagaries of the weather, one of the most ancient forms of entertainment. The cruise has featured two contrasting weather patterns: in the first half of the cruise, we had an endless gray stratus deck and occasional dense fog. We didn’t see the sun, moon, or stars for over a week! Around the halfway point of the cruise, a cold front passed through and cleared away the low clouds, replacing them with mostly clear skies that have featured interesting patches of mid- and high-level clouds, but also interminable wind and waves.

Dramatic altocumulus clouds served as our re-introduction to the sky after the stratus deck finally lifted. Credit: Alex Kinsella.

For our purposes, the most important part of weather at sea is the ocean surface waves, the characterization of which we call the “sea state”. A calm sea state is much better for our operations, but a lively sea state can make for great nature-watching. My colleague Gwen Marechal, a postdoc at Colorado School of Mines, is our resident wave expert, and the way he looks at waves reminds me of the way that most of us look at wild animals. We’ll be gazing out at the ocean and Gwen will point off to the distance. “Bird?” I ask. “No, a really good wave!” he says with reverence and a smile. One can think of there being at least two “species” of waves: wind waves and swell, but in a given sea state, each passing wave is unique, with its own height and character. Watching for good waves can be as satisfying as watching for good birds.

Sea spray from a breaking wave forms an ephemeral rainbow. Credit: Alex Kinsella.

When we’ve had clear skies at night, stargazing has been a favorite evening activity, as it always is at sea. Jupiter has been rising in the early evening, giving us a bright companion in the southeast sky as we transition from day watch to night watch on the ship. Around 8 p.m. each night, the sun is far enough below the horizon that the Milky Way becomes clearly visible, along with familiar constellations like Ursa Major, Cassiopeia, and Sagittarius. Finding those landmarks in the sky can be harder at sea than in a city, because there are almost too many stars, so the familiar ones are harder to find! We have continued the maritime tradition of philosophizing under the stars at night, wondering about the ocean below, the sky above, and much more.

Four of our autonomous saildrone vehicles shine at night like new planets on the horizon. In the sky are stars from the constellations Ophiuchus and Hercules, but the photo captures only a tiny fraction of the stars visible by eye. Credit: Alex Kinsella.

Being at sea truly feels like being in another world, but, at least by surface area, this is what most of the world looks like. It has been a gift to be on the ocean watching this part of our planet in its daily motions. The science we’ve conducted on this cruise will help us understand one more piece of nature’s workings, but no amount of knowledge can quite capture the experience of being in the midst of it all.

 

A First Cruise Experience with NASA’s S-MODE Field Campaign

By Mackenzie Blanusa, M.S. student at the University of Connecticut // Aboard the Bold Horizon //

I had been patiently waiting and dreaming about this research cruise for months. Yet a few days before traveling from Connecticut to Oregon for ship mobilization, I couldn’t shake a feeling of denial – like I couldn’t believe I was really going to be out in the Pacific Ocean on a research vessel for an entire month.

Mackenzie, a young white woman in a long red coat, poses on the R/V Bold Horizon. She is leaning on the railing, with blue ocean water and a sunset behind her.
A picture of Mackenzie on the R/V Bold Horizon with a sunset in the background. Credit: Jessica Kozik

I am participating in NASA’s Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) as part of the science party aboard the research vessel Bold Horizon. The focus of this experiment is to sample ocean fronts that are a few miles in size to study their dynamics and effects on vertical transport. The ocean fronts are sampled using aircraft, ship surveying, and autonomous platforms with names such as wave gliders, sea gliders, Saildrones, floats, and drifters. So being aboard the ship is just one piece of this complex research experiment.

Ben Hodges from the Woods Hole Oceanographic Institution (WHOI) holding the EcoCTD. The electric winch is on the right. Credit: Mackenzie Blanusa

 

On the R/V Bold Horizon I have been working the night shift from 4 p.m. to 4a.m. My nights mostly consist of running an instrument called an EcoCTD, which measures temperature, salinity, pressure, chlorophyll, backscatter, and oxygen. The EcoCTD is casted off the back of the ship using an electric winch and travels vertically through the water column to a depth of about 390 feet (120 meters), and is then reeled back in. We usually do this all through the night while driving back and forth across a front. The vertical profiles then get plotted through time and we utilize this data in real time to decide where to deploy autonomous instruments, collect water samples, and keep track of how ocean fronts are evolving.

A depiction of the EcoCTD data. Temperature (in degrees Celsius) is plotted as a time series vs. depth. The white contours are lines of constant density. A front can be seen at the surface as the temperature goes from cool (green) to warm (yellow). The pattern repeats itself as we go back and forth across the front. Credit: Ben Hodges
A picture of a wave glider used in the S-MODE experiments. Credit: Mackenzie Blanusa

Additionally, I have been helping with the recovery and deployment of wave gliders and mixed layer floats. Wave gliders are an autonomous surface vehicle that look like a surfboard and are powered by waves and solar energy. They measure variables such as velocity, temperature, salinity, wind speed and direction, air pressure, and radiation. There are eight wave gliders in this experiment, and we had to recover one of them because it had a broken sensor. The mixed layer floats are recovered and deployed every few days and are tasked with floating in the mixed layer to measure vertical velocity.

Mackenzie (left) and Avery Snyder (right) getting ready to deploy a mixed layer float. Credit: Alex Kinsella

Aside from all the science, it’s also worth mentioning what life on a research vessel is like. It often feels simpler than the hustle and bustle of everyday life on land – I have a set 12-hour shift doing a very specific task, get meals provided for me, and have limited communication with the rest of the world. Everything feels more clear-cut, and I know what my purpose is. Of course, sea going is also mentally tolling due to the constant rocking back and forth. But we’ve been lucky with mostly good weather, and I haven’t gotten seasick yet.

While S-MODE is certainly a busy experiment with a lot of moving parts, there are moments where it feels like there is nothing to do. This often happens when the weather and sea state is too rough for sampling, so we are forced to find other ways to occupy our time…which can be challenging since you’re in the middle of the ocean with little entertainment. Times like these are met with playing silly games, watching a movie, and learning how to tie different types of knots.

S-MODE is wrapping up in a few days and I’ll be on my way back home. The sense of denial I once felt has been replaced with self-confidence and motivation to pursue a career as a seagoing oceanographer. I have learned so much from all the other scientists on board who are more than happy to share their knowledge with a curious graduate student. Although S-MODE is ending, I know this is just the beginning of my journeys at sea.

Life at Sea: A “First-Timer” Chronicles NASA’s S-MODE Field Campaign

By Sarah Lang, Ph.D. student at the Graduate School of Oceanography, University of Rhode Island. // Aboard the Bold Horizon //

Going to sea for the first time as part of NASA’s S-MODE mission has been an experience like no other. You establish a new normal on the boat and quickly fall into new routines. Perceptions of time even change! I joked with some people on the boat that time is but a label on our samples. Perhaps that’s a bit dramatic, but normal perceptions of time do not apply at sea –especially if you start your day at 2 pm and finish at 2 am.

For me, time flies the fastest when Pat Kelly and I are taking biological samples for long periods of time, looping through our collaborative Spotify playlist titled “boat songs. With Talking Heads, Madonna, Mötley Cru, and Fleetwood Mac, we have quite the mix. Pat rolls his eyes any time one of my disco songs comes on, but I know he secretly loves it.

Caption: First sunset off the Bold Horizon after many cloudy days!

For those on the night shift, their work day doesn’t begin until 4 pm in the afternoon and doesn’t end until 4 am. They have lunch in the middle of the night! And a cup of joe with breakfast at the same time those on land are getting home from work.

Most people have the day shift (0400 – 1600) or the night shift (1600 – 0400). A few of us on the biology team have schedules that change all the time, so I get to experience a bit of both.

The day shift is nice because that’s when most meals are served, and if you keep your eyes peeled you might see dolphins, sea lions, or whales. The night shift has its perks too. Typically, there is a movie playing in the lounge for those on break. It’s a bit quieter on the boat, except when we’re laughing at Flight of the Conchords or dancing on the back deck during EcoCTD shifts (an EcoCTD is a vertical profiler measuring physical and biological variables). We’ve only had one day of (semi) clear skies, so nights on the water have been especially dark. Beyond the light of the boat, it’s pure darkness. No light from land in sight.

Caption: (Left) Alex Kinsella, Leo Middletown, Igor Uchôa Farias, and Kelly Luis standing on the deck as we depart San Francisco harbor after a quick pit stop. (Middle) The Bold Horizon sailing on the blue sea, with a CTD-Rosette sitting on the deck. (Right) Audrey Delpech and Mackenzie Blanusa in immersion suits, AKA gumby suits. These are safety suits that protect against hypothermia in the case of an emergency.

Now onto the science!

We are here to study submesoscale (small! 1-10 km) dynamics in the ocean, which are associated with significant vertical velocities. We care about how climate-relevant parameters like heat and carbon are taken up by the ocean and what happens to them once they are in the ocean. Submesoscale features change really fast, which makes them very difficult to study. In this campaign, we are studying these features with autonomous vehicles (like Saildrones and Wave gliders), Lagrangian floats (which move with the water), airplanes, and of course, the ship. We’ll need all the data we can get to understand these complicated and quickly-changing processes!

Caption:(Left) Deploying the CTD-Rosette to collect seawater samples at depth, as well as vertical profiles of temperature, salinity, oxygen, backscatter, and chlorophyll-fluorescence. (Middle) Igor Uchôa Farias and Mackenzie Blanusa on Eco-CTD watch, listening to Megan Thee Stallion. (Left) Jessica Kozik and Mara Freilich working on computers in the “dry lab,” with the “wet lab” behind them.

Many of us on the biology team are interested in how these smallscale processes structure phytoplankton communities. Phytoplankton are microscopic organisms that undergo photosynthesis, taking up carbon from the ocean and producing much of the oxygen we breathe. They are the base of the marine food web, so if you like fish and dolphins and other sea creatures, you like phytoplankton! It’s important to know the controls on the distributions of phytoplankton species. Complex ecological interactions in the ocean are important to the ocean’s carbon cycle, and therefore, Earth’s climate system.

“Ocean color” is a key piece to this puzzle. We use light to study the biogeochemistry of the ocean. Light interacts with water and the “stuff” that’s in the water (like phytoplankton!). We can quantify these interactions with optical measurements to understand more about the biogeochemistry of the ocean. This is also how we can study the biology of the ocean from space.

In my next blog post, I’ll talk about how we use seawater samples to validate optical measurements, and how we use these optical measurements to understand measurements taken by hyperspectral sensors on airplanes (and eventually in space by NASA’s PACE mission!).

Student of the Sea: Learning the Ropes Aboard NASA’s S-MODE Mission

By Igor Uchôa, Ph.D. student at the University of Maryland in the Atmospheric and Oceanic Sciences Department // Aboard the Bold Horizon //

NASA’s S-MODE mission was designed to measure and understand the complex oceanic features classified as “submesoscale,” i.e., features spanning up to 6.2 miles (10 kilometers) across. Such fine filaments and sharp density fronts in the ocean are responsible for fast and unpredictable changes in velocity, temperature, salinity, and even among small organisms called plankton in the surface layer of the ocean. A myriad of autonomous instruments, airborne sensors, and a fully equipped ship are part of the robust methods of measuring submesoscale dynamics in the California Current region.

There are currently more than 40 scientists among researchers, students, and technicians from various institutes working together either virtually all over the country (in the control center), or in the research vessel Bold Horizon (where I currently am) sampling and streaming data for the group to analyze. Within the S-MODE science party, the air-sea interaction group attempts to understand the connections between the submesoscale filaments in the ocean and the atmosphere above them. As part of this group, learning has been my daily activity on the ship.

A science team of roughly 20 people stands on the pier in front of a research vessel.
Science team on board the R/V Bold Horizon for the second deployment of the S-MODE mission (10/07/2022). Credit: Erin Czech.

One of the tasks I am responsible for here, among other science team members, is the launching of instruments called radiosondes while the ship surveys important features in the ocean. The 200 radiosondes stocked in the ship are comprised of a foam cup, a helium-filled balloon, and a sensor. The instruments, which resemble a toy, are incredibly valuable for observing the temperature, humidity, winds, and even cloud-base height of the atmosphere in its first 3.1 miles (5 kilometers) from the surface on average.  

The ocean and atmosphere at larger scales actively interact and change each other’s properties. One of the goals of the S-MODE cruise is to find out if this also occurs in submesoscale phenomena such as cold, dense filaments in warm waters as commonly seen in the California Current region.

Three images -- on top is a photo at night of scientists on the research vessel. On the bottom left, a man releases a small balloon attached to a device that collects atmospheric data. On the right, a team aboard the ship deploys autonomous floating marine robots.
My experience on the S-MODE cruise sampling: (top) casting a sensor underway for vertical sections of oceanographic properties such as temperature, salinity, chlorophyll, and dissolved oxygen, (left) launching a radiosonde in calm weather conditions, (right) Avery Snyder, Gwendal Marechal, Jessica Kozic, and I on the deployment of Lagrangian floats for tracking and measuring properties of submesoscale features. Credit: Alexis Arends, Andrey Shcherbina.

Installing those sensors is a relatively easier task than the high-tech instruments found on the research vessel, but the practical launching is sometimes a bit… daunting. Knowing how to tie a balloon suddenly becomes essential when you must launch many radiosondes in a small window of time in a rocking ship in windy weather. Also, becoming an expert observer of wind direction is a must-have skill, or else expensive sensors become tangled in the ship and lost forever. It is still a fun procedure, nonetheless, which brings very useful information to the puzzle of understanding air-sea interaction in the submesoscale.

Throughout the process of helping the team launch S-MODE and bring useful data to the group, I had to learn how to take more initiative. I gradually felt that I became part of the plan-of-action for the survey, which I believe is very important for a scientific career, especially for a Ph.D. student like me. Being part of such a high-level research mission is both an overwhelming and exciting learning experience. We still have many days to go, but I am certain that this cruise has already taught me a lot.

Alaska’s Newest Lakes Are Belching Methane

 

A lake in Alaska. The lake surface is covered in floating plants and cattails and other grasses can be seen in the foreground of the image. The sky is gray and cloudy.
Big Trail Lake is one of Alaska’s newest lakes and one of the largest methane emission hotspots in the Arctic. Credit: NASA / Katie Jepson

By Sofie Bates / FAIRBANKS, ALASKA /

“This lake wasn’t here 50 years ago.” 

Katey Walter Anthony, an ecologist at the University of Alaska-Fairbanks, dips her paddle into the water as her kayak glides across the lake. “Years ago, the ground was about three meters taller and it was a spruce forest,” she says.

Big Trail Lake is a thermokarst lake, which means it formed due to permafrost thaw. Permafrost is ground that stays frozen year round; the permafrost in interior Alaska also has massive wedges of actual ice locked within the frozen ground. When that ice melts, the ground surface collapses and forms a sinkhole that can fill with water. Thus, a thermokarst lake is born. 

Walter Anthony is a researcher collaborating with NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) project. She’s studying the formation of these thermokarst lakes and how this process is caused by and contributes to Earth’s changing climate. 

“Lakes like Big Trail are new, they’re young, and they are important because these lakes are what’s going to happen in the future,” she explained. 

They’re also belching methane – a potent greenhouse gas – into the atmosphere.

Small bubbles on a lake surface.
Methane bubbles appear on the surface of Big Trail Lake.
Credit: NASA / Sofie Bates

At first glance, Big Trail looks like any lake. But look closer and there’s something disturbing the surface: bubbles. 

Two things happen as the permafrost layer thaws beneath lakes: microbial activity increases and pathways form in the permafrost . At Big Trail Lake and other thermokarst lakes in the Arctic, microbes digest dead plants and other organic matter in the previously frozen soil in a process that produces carbon dioxide and methane. More rarely, permafrost thaw can form ‘chimneys’ under lakes that allow methane and other gases – previously trapped deep underground – to escape. This release of ‘geologic’ methane is happening at Esieh Lake, another of Katey Walter Anthony’s ABoVE study sites. In all thermokarst lakes, the gases bubble up to the lake surface and release into the atmosphere. 

“At Big Trail Lake, it’s like opening your freezer door for the first time and giving all the food in your freezer to microbes to decompose. As they decompose it, they are belching out methane gas,” says Walter Anthony. She leans over and pushes her paddle into the spongy ground under the water, causing clusters of methane bubbles to erupt on the surface.

As the lake freezes in the winter, the bubbles can prevent ice from forming and create pockets of open water that continue emitting methane throughout the season. In other areas, the methane bubbles create frozen domes of ice on the surface of the lake.

“Once ice has formed on these lakes, the rising methane bubbles will freeze into the ice,” explains Franz Meyer, Chief Scientist at the Alaska Satellite Facility in Fairbanks. Meyer is also one of the chief scientists for NISAR, a joint NASA and ISRO satellite that will study our planet. One of the instruments that will be on NISAR is a radar similar to the instrument the ABoVE team is flying over Arctic and boreal regions to study the ground, ice and lakes below.

“These bubbles that we see in the ice change the way that the radar signal interacts with the ice surface,” he explains. The radar can detect roughness – like from frozen methane bubbles – on the surface of the land, ice and water below. Thermokarst lakes with a high roughness, or more bubbles, tend to have higher methane emissions compared to smooth lakes. Combining the airborne radar data with measurements collected in the field allows scientists to estimate how much methane lakes are emitting across a large region.

The UAVSAR instrument, housed in a pod on the underbelly of NASA Armstrong’s NASA802 research aircraft, uses radar to study the ground, ice and water below.
Credit: Sofie Bates / NASA

 

 

Walter Anthony says she has something to show us and paddles over to what looks like a piece of trash: an upside down plastic bottle sticking out of the water. It’s a methane collection device, she says, explaining that the bottle traps methane as it bubbles up through the water. Walter Anthony turns a valve and collects a sample of the gas in a smaller bottle, which her team will chemically analyze to determine the age and concentrations of the various gases within.

But there’s a faster way to know if the lake is releasing methane.

Walter Anthony opens the valve, lights a match, and holds it to the opening. A burst of flame ignites. She lets the flame burn for a few seconds and then turns off the valve. It’s like a more extreme version of lighting a gas stove.

Katey Walter Anthony holds a methane bubble trap while sitting in her kayak in Big Trail Lake. Credit: Sofie Bates/NASA
Turning the valve on the bubble trap releases methane gas, which is flammable. Holding a match near the valve ignites the gas in a burst of flame.
Credit: NASA / Sofie Bates

There are millions of lakes in the Arctic, but only the newer ones are releasing high amounts of methane. That’s because most Arctic lakes are hundreds or thousands of years old. Those lakes used to be just like Big Trail Lake, but the microbes there have since run out of permafrost organic matter to decompose, and instead are emitting methane from more modern carbon sources. That means the older lakes are no longer emitting as much old methane.

“So what’s a concern for the future, when we think about permafrost carbon feedback, are areas that are newly thawed,” says Walter Anthony. Just like Big Trail Lake.

Walking Back in Time to Learn About the Future of Permafrost

 

Scientists and pilots with NASA’s ABoVE campaign got to tour the U.S. Army CRREL’s permafrost tunnel during their August 2022 field campaign in Fairbanks, Alaska. Credit: Sofie Bates / NASA

By Sofie Bates / FAIRBANKS, ALASKA /

There’s a freezer door in the mountainside outside of Fairbanks, Alaska. Tom Douglas opens it and we step inside, breathing in cold air and musky dust as we start to walk back through time.

This isn’t fantasy. It’s the Permafrost Tunnel run by the U.S. Army’s Cold Regions Research and Engineering Laboratory in Alaska, where Douglas is a Senior Scientist.

Recently, Douglas led a group of scientists and pilots with NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) on a tour through the Tunnel to learn about permafrost. Permafrost is any soil, ice, or organic matter like plant material or bone that has stayed frozen year-round for at least two years. The tunnel was initially excavated in the 1960s and has been expanded since 2011. Now, the Permafrost Tunnel has almost 500 meters of excavation. “There’s just nowhere else on Earth that has this type of access to permafrost,” said Douglas.

The ABoVE team studies permafrost thaw and its impact on landscapes and ecosystems across the Arctic from the air and above the ground. They also work in conjunction with CRREL and other scientists to figure out how measurements made in and above the permafrost tunnel can be extrapolated to airborne measurements taken from research aircraft. But for many of the ABoVE team members, this is their first time getting to see permafrost up close.

Around 18,000 years ago, mammoths and steppe bison roamed Alaska. Their bones are frozen and preserved into the permafrost layer. Credit: Sofie Bates / NASA
A tusk frozen in the wall of the Permafrost Tunnel. Credit: Sofie Bates / NASA

The frozen soil near the tunnel entrance is the same ground that mammoths and steppe bison walked on around 18,000 years ago – and it has the bones to prove it. But as we move deeper into the tunnel and further back in time, these signs of animal life disappear.

Douglas stops at a yellow tag in the deepest, farthest back part of the tunnel. He points out an alder branch sticking out of the wall. “This is the oldest thing in here,” he says. “It’s nearly 45,000 years old.” 

Scientists use a technique called Carbon-14 dating to determine the age of sticks – like this one, the oldest thing in the tunnel – rocks, bone and other material in the permafrost tunnel. Credit: Sofie Bates / NASA

Most of the permafrost tunnel is densely compacted dirt and rock. In some places, frozen grasses and other dead plant matter are buried within the walls or hanging from the ceiling. As we walk down further into the tunnel, Douglas points out different features: the thin horizontal lines that show how the land surface moved up over time, strips of ice from water that pooled atop the permafrost and froze, and giant ice wedges.

Tom Douglas shines a flashlight on a giant ice wedge in the permafrost tunnel. Credit: Sofie Bates / NASA

Arctic permafrost is thawing at an accelerating rate. As permafrost thaws, those ice wedges in the permafrost melt. This creates holes in the ground that can cause the land surface above to subside. This process is called thermokarst – and it’s drastically changing landscapes not only above the Permafrost Tunnel but at locations across Alaska and northwestern Canada. In some areas, the ground is sinking or caving in. In others, new bodies of water called thermokarst lakes are forming.

As we walk through the tunnel, Douglas reminds us that just above our heads is a boreal forest with grasses, shrubs and trees. CRREL scientists have taken measurements above and belowground to try to relate changes in the land surface above to features  in the permafrost layer belowground.

Different vegetation types grow on ground that has frozen versus on thawed permafrost, he explains. Black spruce and sphagnum mosses tend to grow above the hard, frozen silt of permafrost. In areas where permafrost is thawing, the trees are often stunted or tilting to the side. Areas with thermokarst features also tend to have vegetation often found in wetlands. wThawing permafrost also changes the soil moisture content. The ABoVE team is measuring both of these factors – vegetation type and soil moisture – from aboard the NASA 802 research aircraft with a radar instrument called UAVSAR.

Above the permafrost tunnel is a common scene in interior Alaska: a boreal forest with spruce trees and a thick layer of spongy ground covered in grasses. Credit: Sofie Bates / NASA

The work scientists are doing at the CRREL permafrost tunnel helps connect features in the permafrost layer to changes in the ground above that can be remotely sensed with airborne radar instruments – changes the ABoVE team is studying across Alaska and northwestern Canada with research aircraft. 

“Measurements we make here at the tunnel can be projected and scaled to help us track these changes across the broader Arctic,” said Douglas.

NASA’s Summer Storm Research Is Flying Into The Next Stage

A small aircraft coming in for landing at sunset.
NASA’s ER-2 landing after a day spent flying above thunderstorms for the DCOTSS field campaign. Credit: NASA/Cameron Homeyer

By Jude Coleman

A low, surging wind picks up as the first few raindrops splatter onto dusty ground. Dense cumulonimbus clouds, like soot-stained cotton balls, knot tighter and tighter in the sky. While the thick scent of petrichor and ozone invades the air, an electric burst of lightning slashes through the sky; deafening cracks of thunder follow, like the footsteps of some celestial giant crashing through the atmosphere.

Summer thunderstorms like this may last just a few minutes, or for several hours. In their wake, the NASA Dynamics and Chemistry of the Summer Stratosphere, or DCOTSS, operations room buzzes with activity. After a storm, the Kansas-based crew sends out a high-altitude plane loaded with instruments to take measurements and make observations.

In a process called convection, thunderstorms’ roiling activity draws up warm air from the lower atmosphere and cools it as it travels higher, sometimes shooting it into the next atmospheric layer above called the stratosphere. The DCTOSS team aims to figure out exactly what material swirling in the air gets transferred between atmospheric layers when this happens.

“Until this mission, nobody had ever tried to do this,” said Ken Bowman, DCOTSS principal investigator. “There haven’t been direct observations to tell us how this happens or how important it is.” Bowman and his crew completed their final fight in July, and are now back at in the lab to begin sorting through the data they’ve collected.

View out of the cockpit of the ER-2 cockpit while in flight. The view looks down on fluffly clouds below and the deep blue sky is above.
The view from the ER-2. Credit: NASA/Greg Nelson

For the last two summers, DCOTSS team meteorologists kept their eyes peeled for thunderstorms in North America, which is a global hotspot for thunderstorms that overshoot air into the stratosphere. When a storm erupted, the team had to estimate if and where the storm’s plume would overshoot and air at the top of the storm would mix with stratospheric air, called the storm’s outflow. While the meteorologists used radars and satellites to direct the pilot of NASA’s high altitude Earth Research or ER-2 aircraft to the storm outflow, scientists closely monitored water vapor measurements aboard the aircraft. A spike in water vapor indicated that the plane had entered the outflow plume.

“There’s definitely been some cheering,” said Kate Smith, a post-doctoral researcher at the University of Miami who works with instruments aboard the ER-2. “It’s really kind of amazing that they’re able to predict where [it’s] going to happen.”

The rapid updrafts in thunderstorms can push all kinds of material into the stratosphere, including water vapor and pollutants from both man-made and natural sources. Because the stratosphere has its own delicate chemistry, chemicals from the lower atmosphere could alter it, explained Smith. For example, some compounds can wreak havoc on the atmosphere as they break down and interact with the fragile ozone layer that protects Earth from the Sun’s harmful radiation.

Though scientists have known storms overshoot in the stratosphere, little is known about their interactions with the climate. Some compounds such as water vapor and methane are strong greenhouse gases and contribute to global warming. It’s important to understand their role in the atmosphere to predict how it will change in the future due to human-caused climate change, explains Bowman.

A shot of the underside and instrument pod under the wing, near the body of the aircraft.
Preparing the ER-2 for flight during the DCoTSS field campaign in Salina Kansas, July 2022. To the right in the image, under the wing is a pod that carries science instruments. credit: NASA/ Darick Alvarez-Alonzo

One instrument pivotal to those predictions is the Advanced Whole Air Sampler: a manifold of 32 canisters that collects air samples as the plane flies. The AWAS measures 50 different compounds, including carbon monoxide, methane, hydrocarbons, molecules made up of only hydrogen and carbon, and halocarbons, molecules that contain halogen atoms such as chlorine and bromine.

The halogen-containing gases break down and produce radicals, a kind of free-roaming atom that can destroy the ozone layer, explains Smith, who is part of the AWAS team. Smith and her colleagues are particularly interested in short-lived compounds that typically wouldn’t make it into the stratosphere on their own.

“Because of this chimney type process, where [the storm] shoots them up fast, we can identify and detect some of these species in the lower stratosphere,” added Smith.

Another instrument collecting short-lived compounds is the Compact Airborne Formaldehyde Experiment (CAFE) from NASA’s Goddard Space Flight Center, which measures levels of formaldehyde with a laser-based technique. Formaldehyde measurements help tease apart how air is transported into the stratosphere since only freshly transported air will have formaldehyde in it.

Both CAFE and AWAS will contribute vital information to the mission, but they are just two of a dozen total instruments the team depends on.

“They’re like your children, you know? You love them all equally,” said Bowman.

With the flights finished and the ER-2 back in the hangar, the next phase of the mission is analyzing all the collected data. While the team sampled around 20 storms during their deployment, hundreds more occurred that weren’t sampled. The first step in their analysis will be to use their data to make models that estimate how much collective material thunderstorms eject into the stratosphere. Then, they can start unraveling what that material does when it gets there—advancing NASA’s understanding of Earth’s climate and preparing for the changes ahead.

 

 

Student Scientists Flying High

Six students pose in front of the P-3 aircraft.
Posing with friends in front of the P3 Orion before boarding Photo Credit: Raffa

by Deb Hernandez

A handful of college students recently got to fly through the skies over the Mid-Atlantic as part of a NASA airborne science program.

Freshman and sophomore students from minority-serving institutions joined NASA researchers on a P-3 aircraft based at NASA’s Wallops Flight Facility in Virginia, as part of the Students Airborne Science Activation (SaSa) program coordinated by the NASA Ames Research Center in Moffett Field, California. Carrying instruments that collect atmospheric data, the five flights from July 5-16 followed various paths along the I-95 corridor from Baltimore to Hampton, Virginia, as well as over the Chesapeake Bay.

Several SaSa students wrote personal blogs about their experiences, which are excerpted as quotes in the narrative here.

In the cockpit of an aircraft a woman facing away from the camera sits behind the pilots with headphones on, looking out hte windows.
Neima Dedefo sitting in the flight deck and looking out over the Chesapeake Bay. (Credit: Daniel Harrison (Fellow SaSa Intern))

Flying at altitudes between 1,000 and 10,000 feet – which included low-level passes and several spiral tracks on each outing – had some of the students a little nervous.

“I didn’t know what to expect from my first non-commercial flight. All I knew was that the flight had valuable data related to my research, and all I had to do was endure the spirals to get it,” wrote Neima Dedefo, an aviation science major at the University of Maryland, Eastern Shore.

Dedefo picked the lucky number before takeoff and got to sit next to the pilot during one of the flights. “I sat up front, with the rush of adrenaline coursing through my veins. Listening to the pilots communicate with Air Traffic Control (ATC), looking at the view from my window was a solidifying moment for my career,” she noted.

A woman stands next to the beige, curved interior wall of the P-3 hold a rectangular-folded paper air sikness bag.
Trisha poses with her motion sickness bag before takeoff. Credit: Neima Dedefo

Trisha Joy Francisco, a mechanical engineering student at the University of Maryland, Baltimore, said she was so excited for the flight she asked the program manager to put her on the first flight.

“Everyone was required to be in the hangar by 9 a.m. sharp for the flight briefing,” Francisco recalled. “Our task as students was to listen, observe and ask questions to gain a better understanding of being in the airborne science field. Watching the discussion felt surreal to me. It felt like I was in an episode of Star Trek watching the officers plan for their missions.”

Francisco said the flight day “was filled with anticipation” because the weather forecast the night before had been for stormy skies.

A view out of the aircraft window of fields and trees in greem and then the stark line of the horizon, blue with fluffly clouds.
Flying over Wallops Flight Facility in the NASA P-3 (Credit: NASA SaSa/Vanessa Hua)

“7:45 a.m. – that was the moment to ultimately decide if our last airborne science flights were going to take place,” explained Stephanie M. Ortiz Rosario, a physics and atmospheric sciences major at the University of Puerto Rico at Mayagüez. “Pilots, scientists, students, and coordinators gathered at the conference table in the hangar to listen to the information that would influence their decision: the weather briefing.

“And there was me, the one in charge of delivering the forecast,” she said.

“As my first time doing it for the team in real time, it was a nerve-wracking moment, especially knowing that the data I brought in was critical for their decision, and I needed to provide it as clearly as possible,” Rosario said. “The reality is that I was ready to do it. My mentors have been incredible in helping me build up my forecasting and science communications skills. It was the perfect time to showcase myself as a future atmospheric scientist. I just needed to take a deep breath and step in with confidence.

“After what seemed like the most terrifying 3 minutes of my life, I felt the overwhelming support of the team, with their applause and comments. I instantly knew how happy I was to accept the challenge to deliver the weather briefing and see that as a student, my knowledge was useful and appreciated in NASA,” Rosario wrote.

A woman int he center of the photo poses with a small NASA aircraft in the hangar.
Vanessa Hua learning more about the various aircrafts flown by NASA at the Langley Research Center Hangar (Credit: NASA SaSa/Michelle García)

Vanessa Vuong Hua, an environmental studies major with a concentration in atmospheric sciences, University of California, Riverside, did research on trace gases and their impact on the atmospheric chemistry of cities. She was motivated by her concern for her hometown of Riverside, California. “I am no stranger to the poor air quality that plagues the city on a regular basis,” she noted.

“My journey through STEM has been a flight full of missed approaches, spirals, and cruising,” Hua related. “While my destination is not certain, I know without a doubt that environmental science will always be a field I would love to contribute to. In a world where degradation and climate change are occurring at a rate faster than we can prevent it, scientific intervention is more needed than ever. Flying on the P-3 Orion has served to further solidify my passion for atmospheric science and giving back to communities in need of environmental justice.”

Two students sit next two each other in airplane seats inside the P-3 aircraft.
Romina Cano (left) and Sophia Ramirez (right) buckled up and ready for take off! Credit: Sophia Ramirez

Sophia Ramirez, a biology major from California State Polytechnic University in Pomona, has known since middle school that she wanted to follow a career path in science. She noted that “taking off for a flight in a STEM career can be difficult as a first-generation student with little knowledge of resources, guidance, and representation in the desired field.”

“Fast-forward, and I am now in my seat, buckled up, headset on, and ready for take-off,” Ramirez wrote. “As the pilots and head scientist used the headsets to ask each scientist if their instrument was ready to commence take-off, I had a flashback of teachers taking attendance in class. But, instead of doing so to begin class for the day, it was done to begin a flight that would collect atmospheric and Earth data that can be used for research projects and potentially to educate all students of the world about atmospheric processes conditions.”

Ramirez continued, “Throughout the flight, I felt my dreams of becoming a scientist become more tangible, as I saw the science happening in front of me. As I was immersed in science myself. Although I could not take steps with a feeling of stability as I walked down the aisle of the plane, I felt a stability in my career as a woman in STEM.”

A woman in a blue hat and sleeveless top stands in a boat with the blue green water of the Chesapeake and the horizon with a clear sky int he background.
Camila Hernández Pedraza. Boat trip at The Chesapeake Bay on July 1, 2022. Part of NASA SaSa program designed to collect water samples using the Multiparameter. (Credit: Trisha Joy Francisco/ SaSa student)

SaSa intern Camila Hernández Pedraza, a biology major at the University of Puerto Rico, Cayey Campus, enjoyed a slightly different experience as she traversed the Chesapeake Bay via boat to collect data for her research.

“As an intern in the SaSa program, I enjoy researching, studying, and increasing my understanding of how anthropogenic and natural climate change impacts life,” she wrote. “The most gratifying moment was being able to analyze and relate our findings with my previous studies in biology and chemistry.”

Although she was having a good time and learning as much as she could about water quality, Pedrazza got hit by a rough bout of motion sickness.

“After the boat had docked, I found myself using ice packs and wet towels, while laying at a restaurant with air conditioner and telling myself that everything was going to be okay,” she recalled. “I knew becoming a scientist would be challenging, but I also knew that discovery and answers would be worth it. Despite the tribulations, I strive to thrive, because this is what I love.”

 

 

An Arctic Treasure Hunt

A fuzzy veil of musk ox fur drapes over a pink wildflower plant on the ground.
Musk ox wool, called qiviut, is caught on wildflowers near Thule Air Base, Greenland.
(Credit: NASA/Ramsayer)

by Kate Ramsayer / PITUFFIK, GREENLAND/

It was a duck that led me to treasure. And a plane that led me to the duck.

I set out that afternoon from Thule Air Base, walking down a gravel road with the Greenland Ice Sheet looming in the distance. I was trying to find an interesting view to film NASA’s Gulfstream V as it came back from a flight measuring sea ice for our ICESat-2 field campaign. I failed miserably, the plane landing as a spot in the distance far away.

A fuzzy picture of the long-tailed duck in water.
A fuzzy picture of the long-tailed duck that led the author to fuzzy treasure. (Credit: NASA/Kate Ramsayer)

Annoyed, I turned around and glanced at a pond of water by the road and spotted a duck – a fancy duck! I’m not a great birder, but I had studied up on the area birds and recognized it as a long-tailed duck. I crept closer to try to take a picture with my cell phone. It paddled away. I crept. It paddled. And then….

Treasure.

On the far side of the pond, a dull brown piece of fuzz blew in the wind, held by a clump of grass.

I gasped, forgot the duck, and ran over.

It was a dream come true for this knitter – qiviut, the undercoat of a musk ox, softer than cashmere, warmer than wool. I picked it up and rubbed it between my fingers – OK, I picked out a little dirt from it first, then rubbed it through my fingers – and had to laugh at how such a delicate and delicious fiber came from such a hulking beast.

A large shaggy musk ox with stringy brown wool grazes on short grass.
A musk ox – look at that wool it is shedding! – forages near Thule Air Base, Greenland. (Credit: NASA/Kate Ramsayer)

Musk ox are found across the Arctic, and we had spotted several the weekend before on a drive out to the ice sheet. (What do sea ice scientists do on a day off of work? Visit an ice sheet, of course!) The first musk ox we saw was just over a mile from Thule Air Base, and I was surprised to see it so close to noisy humans, grazing peacefully in the hilly tundra of northwestern Greenland.

Although there isn’t a huge diversity of mammals in the region, they’ve been easy to spot on this campaign. That first trip beyond the base, we saw three musk oxen and several huge Arctic hares. I’ve started to recognize the Arctic foxes that live under the building I’m staying in, including a skittish brown kit and shaggy adults shedding their white winter fur.

Top image shows a brown Arctic fox. Lower image shows a white Arctic hare nibling on grass.
An Arctic fox and an Arctic hare
(Credit: NASA/ Kate Ramsayer)

It’s possible the lack of trees makes wildlife-spotting easier. Lack of trees doesn’t mean a lack of flora, however. I was thrilled to realize that our summer campaign overlapped with wildflower season. Yellow poppy-like flowers, white puffballs of Arctic cottongrass, purple petals sticking up from a bed of moss, all thriving in the harsh environment. Walking to the ice sheet, one of the scientists and I fell behind while taking pictures of these hardy plants, growing in the rocky glacial moraine.

Four images of pink and yellow wildflowers grouwing out of crevices in the rocks.
Wildflowers bloom in the rocky soil of northwest Greenland.
(Credit: NASA/Kate Ramsayer)

Back to the qiviut. I found that first bit, then looked around and saw more. Other clumps were hooked on a piece of wood, or a little flower. Musk ox hoofprints and poop provided further evidence of what had wandered by. I followed the prints and poop, picking up clumps of qiviut, like a kid on an Easter egg hunt. If you ever need to lure me into a haunted cottage in the woods, just leave a trail of heavenly fiber – I will skip merrily into the trap.

A clump of musk ox wool piled up on a table.
Qiviut, the soft undercoat fiber from musk ox, the stuff of a knitter’s dream.
(Credit: NASA/Kate Ramsayer)

Walking back to Thule with a pocket stuffed with musk ox wool, admiring flowers poking up from the side of the road, watching a snow bunting flit across another pond, I know how fortunate I am to explore this unique environment. It’s like nothing I’ve seen before, and I doubt I’ll see anything like it again.

The Arctic is warming four times faster than any other region of the planet. I wonder how these hardy animals and plants, so well suited to their frozen ecosystem, will fare. A recent study described a population of polar bears in southwestern Greenland that now rely on glacial ice, instead of the sea ice that is typical seal-hunting grounds for other polar bears, as the sea ice in their habitat has disappeared for most of the year due to climate change.

As a writer who works with NASA scientists investigating how a warming climate impacts our planet, I’m continuously amazed at how well we can measure change even in these remote places. As a visitor to this incredible spot beyond the Arctic circle, I truly hope these flora and fauna can adapt to this ongoing change.

The Greenland landscape. The lower part of the image shows brown rocky ground with four tiny dots of people walking toward the ice sheet in the midground. The horizon is above the ice show blue sky lightly overcast with a sheet of white bumpy clouds.
Scientists with the ICESat-2 field campaign walk across the tundra toward the Greenland Ice Sheet. (Credit: NASA/Kate Ramsayer)

Rocking and Rolling Over Summer Sea Ice

An airplane view of sea ice in mottled white and blue with cracks.
The thickness of melting Arctic sea ice, seen here north of Greenland on July 11, 2022, is tricky to measure from space, but a NASA campaign is designed to improve height measurements from the ICESat-2 satellite. (Credit: NASA/Kate Ramsayer)

By Kate Ramsayer / PITUFFIK, GREENLAND/

I can’t quite find the right words to describe summer sea ice from the air – which is unfortunate, since I’m writing this post about NASA’s ICESat-2 summer sea ice airborne campaign.

It’s like miles and miles of shattered glass, these bits and pieces of ice broken apart and jammed back together. It’s like a honeycomb pattern, except, well, more a mishmash of geometric shapes, no neat hexagons. A 10,000-piece jigsaw puzzle of white ice floes and teal melt ponds and dark open ocean? Let’s go with that.

We’re flying above the Arctic Ocean in NASA’s Gulfstream V plane, a repurposed corporate executive jet (the swoosh branding of the previous owner still adorns the stairway). Onboard are two laser instruments that precisely measure the height of the ice, snow, melt ponds and open ocean below. Hundreds of miles above us, earlier that morning, the ICESat-2 satellite flew the exact same path, measuring the same ice. Scientists will compare the sets of data to improve how we use the satellite measurements, and better understand how and when sea ice is melting in the warming summer months.

The view of sea ice out the airplane window. White extends in all directions to the horizon line, cloudless blue sky above.
Arctic sea ice and clouds, as seen from NASA’s Gulfstream V jet on July 11, 2022. (Credit: NASA/Kate Ramsayer)

Two women and two men are gathered around a pair of laptoms, looking at the screens in carpeted hotel room.
NASA Goddard scientists, from left, Nathan Kurtz, Michelle Hofton, Marco Bagnardi and Rachel Tilling study weather forecast models and ICESat-2 flight paths to plan a flight over the Arctic Ocean. (Credit: NASA/Kate Ramsayer)

Lining up the instrument measurements and the satellite measurements is no easy feat. Starting days before, the scientists had gathered in a common room at our hotel on Thule Air Base in northwestern Greenland, comparing the orbit paths of ICESat-2 with weather forecasts of clouds. Clouds are the scourge of summer airborne campaigns in the Arctic – large storm systems can cover almost the entire ocean, and weather forecast models are not as reliable at this high latitude.

But on this first flight of the campaign the clouds clear for long stretches, sending the scientists, instrument operators and yours truly to the windows to oooh and ahhh at the spectacular ice below.

“Now this is the good stuff,” said Rachel Tilling, sea ice scientist at NASA’s Goddard Space Flight Center, as the abstract stained glass mosaic (that any better?) of sea ice appears under sunny skies.

It’s mesmerizing, watching all the ice go past, seeing the cracks between flows and the ridges where the bits of ice have slammed into each other and refrozen. This campaign is particularly interested in measuring melt ponds, bright bits of teal where the snow covering the sea ice has melted and pooled, causing the ice to thin from the surface.

On the aircraft a scientists sits in gront of a boxy instrument, looking at the screen readout.
NASA Goddard’s David Rabine monitors the LVIS instrument as it gathers height data on the melting Arctic sea ice below. (Credit: NASA/Kate Ramsayer)

The view of sea ice from directly above taken by the LVIS instrument. Mottled white and pale blue sea ice with thin cracks fills the scene.
NASA’s Land, Vegetation and Ice Sensor (LVIS) uses a laser to measure the height of what it flies over, and also carries a camera to collect images like this one, over the Arctic Ocean north of Greenland on July 11, 2022. (Credit: NASA/LVIS team)

As we kneel in front of the port windows, looking out, the laser instruments are right next to us, looking down. On this flight, Goddard’s Land, Vegetation and Ice Sensor (LVIS, pronounced like The King) is firing its laser to time how long it takes for light to go from the plane to the ice or pond or water and then return; ICESat-2 is doing much the same thing from orbit.

It’s not all smooth sailing, though. To calibrate LVIS, the plane has to do a series of pitches and rolls. In the air. Over the polar ocean. With me on board.

I’m not a huge fan of flying. It’s only been a decade or so that I can fly without imagining a fiery death every time we hit a bit of turbulence. (I know, “physics,” but still.) I tolerate it, though, because I love going places.

A view from the plane of Grenland's white glaciers on land in the top and top right of the image. Brown rock of the cliffs and shoreline are a buffer between the land ice and the gray-blue sea ice on the ocean. Broken chunks of icebergs are on the right edge of the image, and a brown rocking island is in the bay.
Glaciers flow into a frozen fjord dotted with icebergs in northern Greenland, as seen from NASA’s Gulfstream V jet flew from Thule Air Base to measure sea ice for the ICESat-2 airborne campaign. (Credit: NASA/Kate Ramsayer)

But now we’re in a small plane, intentionally doing a series of pitches (up fast, then down fast) and rolls (one wing down, then the other wing). Intentionally. Three times. The first time is the worst, says Nathan Kurtz, ICESat-2 deputy project scientist and the campaign’s leader. Maybe for some; not for me. The first time was kind of fun, I’ll grant you, and there’s video evidence somewhere of me laughing nervously.

The second time: “Isn’t the LVIS calibrated well enough?” was the primary thought in my mind, which is why I’m not an instrument scientist.

The third time, I was regretting the snacks I had brought along for the flight. Look to the horizon, I told myself – right as the plane started its rolls. The horizon quickly disappeared, and then the plane rolled the other way, and it was all ice, and then it rolled the other way….

I closed my eyes, took deep breaths, and imagined the spectacular view, a patchwork of ice and water, that would be there once the plane stopped rolling.