Starboard Styles: Who, What, Wear

Claudia Benitez Nelson’s look showcases how these boots effortlessly transition from day to night, as she samples from a thorium cast late on August 19. Credits: Kelsey Bisson

by Kelsey Bisson / NORTHEASTERN PACIFIC OCEAN /

Kelsey Bisson is a PhD candidate working with Dave Siegel at UCSB and is graduating this December. Her dissertation seeks to understand carbon flux in the ocean through data syntheses of satellite and field data around the world. She is currently working aboard the R/V Sally Ride for the EXPORTS field campaign.

Let me now say this: Step aside Jimmy Choo; steel-toed boots are having their moment. Indeed, “Every day is a fashion show and the world is the runway,” according to Coco Chanel. The same can be said for life on the R/V Sally Ride, as I’ll try to demonstrate.

Since I hopped aboard to join the hydro team (with Sasha Kramer, my fellow lab mate also working with David Siegel at UCSB), I’ve noticed there’s no shortage of runways on the Ride, from the hallways leading to the main lab, to the starboard side sampling deck, to her majestic bow with infinite views of blue. Those participating in this field campaign have been rocking this summer’s hottest treads and threads (hottest as in pushing 65 degrees Fahrenheit on a good day), and we expect these trends to hit the continent any week now.

Of course, living on a ship for five weeks with hazardous working conditions and tiny closets means that comfort and consistency here is key. But don’t confuse those two C’s with “boring.” Nay, when these sub-arctic silver seas aren’t stealing the show, Dr. Claudia Benitez Nelson’s yellow boots most definitely are.

They’re not just any yellow; they’re the bright, waxy color not unlike that of French’s yellow mustard. We’re left wondering, did the inspiration from this look come from an anticipation of the galley’s carefully curated condiments, OR is this a nod to Marc Jacob’s summer collection showing plastic yellow pieces as a comment on the dissonance between solar power and our longtime reliance on human-made materials? We may never know, but that’s the fun of fashion. She keeps the rest of her look simple, expertly showcasing how bright boots become the exclamation point of an outfit. “Amazon.com,” she says, when I ask where she got these punchy power pedestals.

Research scientists have been accused of being myopic at times, and that could be because we’re obsessed with microbes & their biogeochemical adventures far beyond that of the average Jack and Jill. Naturally, color us guilty as charged, but we also love the big picture. Perhaps nowhere is this more apparent than in the impossibly chic monochromatic getups of Drs. Collin Roesler and Xiaodong Zhang.

Collin is sporting an all-black “nekton noir” ensemble, maybe alluding to the expansive dark abyss below us, teeming with life and unknown probabilities that connect us all. (Nekton are all the organisms that swim freely in the ocean, as opposed to plankton, for example.)

Collin Roesler could be walking a show in Milan with this look, but instead she’s just outside the galley delivering goddess goth vibes. Credits: Kelsey Bisson

Xiaodong Zhang’s all-grey getup can only be described as simply celestial, boldly celebrating the fact that we haven’t seen the Sun for days.

Unlike the fate for most of us, Xiaodong Zhang does not let the overpoweringly orange vest dictate his self-expression. His monochromatic ensemble soothes, all the while sampling from the conductivity, temperature, and depth, or CTD, instrument at 7am. Credits: Kelsey Bisson

No, you will not find Louis Vuitton here on R/V Sally Ride. Nor will you find Dr. Jason Graff, a first round draft pick for chief scientist on R/V Roger Revelle, and a narrowly close second to Louis in his personal sense of style.

Jason Graff is styled in a “Kurt Cobain meets the 1960s meets Viking God” get up, pairing a crusty pair of Carhartts with vivid swirls of color. Credits: Kelsey Bisson

But you will find Taylor Crockford and her fierce flannels as she hauls hundreds of liters of seawater throughout our labs every day.

Taylor Crockford sports a striped red flannel, and I recently got time to sit down with her and ask, “Why did you choose this flannel today, of all the flannels you own?” She explained, “Because it’s already salt-encrusted and has full range for my arms to lift things, and it’s thick enough for the walk-in fridge to keep me warm.” In case you’re wondering, it’s LL Bean traditional fit – get yours now before they fly off the shelves! Credits: Kelsey Bisson

And my lab mate Sasha Kramer sporting some sensational stitches you’d half expect were designed by Donatella Versace herself.

Sasha Kramer’s leggings have an undeniably kinetic quality to them, mimicking eddies and mixing as seen from dedicated ocean color NASA satellites in space. She pairs these bad boys with a homogeneous hue to soften the look. This outfit choice was made well, but it’s anything but basic. Credits: Kelsey Bisson

“My mom got me these for my birthday,” she says. Through 20-foot seas, instrument mishaps, whipping winds, fake fire alarms, fake abandon ship alarms, diesel miasmas, and all too real sleep deprivation, I look around at all the hardworking happy fashionistas around me. I can’t help but wonder: Was Tim Gunn thinking of us when he muttered his words to live by, “Make it work”?

This Twilight Zone is Dark, Watery, and, Yes, Also Full of Intrigue

Daily migration of marine life to and from the twilight zone to the ocean surface.

by Ken Buesseler / NORTHEASTERN PACIFIC OCEAN /

“There is a 5th dimension beyond that which is known to man.  It is the middle ground between light and shadow.  It is an area, which we call, the Twilight Zone.” ~Rod Serling

Like many kids growing up in the 1960’s, I eagerly anticipated every episode of a black-and-white TV series by Rod Serling, expecting to be surprised, maybe even a little scared, of the mysteries of that 5th dimension he called “The Twilight Zone.” Little did I know that decades later as an oceanographer, I’d find myself at sea with over 60 like-minded scientists on a program specifically targeting the mysteries of another twilight zone—the one in the ocean that lies just below the sunlit surface.

The WHOI EXPORTS team showed off their glow-in-the-dark ocean twilight zone t-shirts prior to departure from Seattle in August. Credits: WHOI/Ken Buesseler

What motivates us is the need to learn more about the role of the twilight zone and the animals that live there in regulating Earth’s climate. The story of how they do this actually starts at the surface, where microscopic marine algae, or phytoplankton, turn carbon dioxide in the water into organic matter via photosynthesis, much like plants on land.

This organic matter forms the base of the marine food web, which basically means that these microscopic plants serve as food for tiny marine animals called zooplankton, which are eaten by larger marine organisms and so on up to larger animals, like the fish that humans consume. Many of these animals come up from the twilight zone at night, using the cover of darkness to feed in surface waters and then disappear come daybreak. This is, in fact, the largest animal migration on Earth and happens around the globe every day, and we barely know it happens. 

Phytoplankton in the form of a diatom chain. Credits: University of Rhode Island/Stephanie Anderson

But I am getting ahead of myself, because despite how appropriate Rod Serling’s description of the mysteries of “the middle ground between light and shadow” fits with what we are doing out here, peering with our instruments into the dimly lit depths, his TV show is not the origin of the name of a twilight zone in ocean sciences. In fact, at least as far back as 1915, text books included discussion of the “decrease in the abundance of life from the sunlit surface layers, through the twilight zone, to the zone of darkness,” as was written in College Physiography. 

Getting back to this cruise, most of the carbon either sinks out of the surface ocean directly or is carried by animals back down to the twilight zone in their guts and gets excreted. All of this sinking carbon becomes food for other twilight zone animals, with less and less remaining as you go deeper. This constant rain of organic carbon is known as “marine snow,” which drifts through the twilight zone and into the deep ocean.

Who cares how much organic matter or carbon goes though the twilight zone?  Well, if you are an animal living in the twilight zone, that’s your main food supply. As a human concerned with the potential for rising carbon dioxide levels in the atmosphere to disrupt our climate, it’s the quickest way you can get organic carbon to the deep ocean, effectively removing it from contact with the surface ocean and atmosphere for hundreds or thousands of years. 

Simply put, without the ocean storing carbon in the deep sea, the levels of carbon dioxide in the atmosphere would be much higher than they are today. And the last time they were this high, Earth was a much different place.

The open top of a neutral-buoyancy sediment trap (NBST) showing the opening through which marine snow drifts and is then collected. Credits: UCSB/David Siegel
WHOI marine chemist Ken Buesseler (right) helps deploy a sediment trap from the research vessel Roger Revelle as part of the EXPORTS program. Credits: UCSB/Alyson Santoro

The tools I used to measure this cascade of particles carrying organic carbon to depth on this voyage includes sediment traps—something like a rain gauge that captures in a tube the sinking particles that are slowly settling through the water. A second method my group uses to measure sinking particles takes advantage of a naturally occurring element called thorium-234, which is slightly radioactive and decays with a precise 24.1-day half-life.  This clock allows me to calculate very precisely how much carbon is being carried from the surface through the twilight zone.  

It’s far too early to share my results from this cruise, but the importance and complexity of these links between twilight zone organisms and climate should not be underestimated. Like snowfall on land, organic carbon transport to the depths varies with the seasons and locations in the oceans, but in ways we cannot predict. And it is important for us in our efforts to better understand how quickly climate will change as we keep adding more carbon dioxide to the atmosphere. This job is so complex that it takes a village out here aboard two research ships, with autonomous vehicles in the water and support teams on land and satellites above. We work together to study these carbon flows and the living organisms in the twilight zone that create what marine biologist and conservationist Rachel Carson called the “most stupendous snowfall on earth.”

I don’t know if there are any episodes of The Twilight Zone to watch out here, but I do know there are many deeper mysteries we hope to unravel about the ocean’s twilight zone. 

Ken Buesseler is a senior scientist at the Woods Hole Oceanographic Institution. He has been working for decades on the ocean twilight zone and its impact on Earth’s carbon cycle. He is currently on the R/V Roger Revelle as part of the Export Processes in the Ocean from Remote Sensing (EXPORTS) field campaign.

Preparing for Research at Sea: Behind the Scenes

The R/V Roger Revelle (front) and the R/V Sally Ride (back) mobilizing for the EXPORTS field campaign at Pier 91 in Seattle. Credits: University of Rhode Island/Menden-Deuer Lab

by Anna Ward / KINGSTON, RHODE ISLAND /

Anna Ward is a marine biology undergraduate at the University of California, San Diego within the Scripps Institution of Oceanography. This summer she is working with Dr. Susanne Menden-Deuer (advisor) and Dr. Gayantonia Franze (mentor) at the University of Rhode Island, Graduate School of Oceanography. She intends to pursue a career in oceanography, and has particular interest in microzooplankton motility and understanding how planktonic organisms respond to changes in surrounding environmental conditions. She is also passionate about furthering science communication through nontraditional media platforms and promoting environmental conservation through education.

..some advice for anyone preparing for a research cruise: be flexible, be prepared (well, the best that you can be), and be excited.

“Hey Anna, want to help me make something?” asked Dr. Heather McNair of me one day. I was instantly intrigued. What were we going to make? What was it going to be used for? How were we going to put it all together? So many questions were running through my head, but I was ready to explore and learn.

This summer, I have been working in Dr. Susanne Menden-Deuer’s lab at the University of Rhode Island’s Graduate School of Oceanography as part of an National Science Foundation-funded Research Experiences for Undergraduates program called Summer Undergraduate Research Fellowship in Oceanography (SURFO). My primary focus was to understand how environmental factors, such as turbulence, affect the way microscopic marine organisms graze on other organisms. While my primary research kept me busy, I wanted to explore other areas of oceanographic research, so I offered to help in the lab any way I could.

Undergraduate Research Fellow Anna Ward measuring plankton abundances in the laboratory. Credits: University of Rhode Island/Menden-Deuer Lab 
Preserved microzooplankton samples settle for microscopy analysis. Credits: University of Rhode Island/Menden-Deuer Lab

Dr. Heather McNair, a postdoctoral fellow in the Menden-Deuer Lab, explained that she was preparing for a research cruise as part of the Export Processes in the Ocean from Remote Sensing, or EXPORTS, field campaign and wanted help making a positive pressure pump, a device used to automate water sampling. I had never even heard of a positive pressure pump before, and now I was supposed to make one?! Enthusiastic and eager to begin, I put my thinking skills to the test. She showed me some of the physical pieces and explained how we wanted our end product to function and look. Okay, sounded pretty self-explanatory, put a few pieces together, and finished product—done.

Except one thing: We did not have all of the pieces, and we needed to create this device using only items available in the lab. Similar to being out at sea, you cannot simply go to the store and get what you need; you have to figure out a way to make it work given the resources available. After a lot of trial and error, we created a device that would work well at sea. Mission accomplished.

Postdoctoral Fellows Dr. Heather McNair (left), Dr. Francoise Morison (middle), and Dr. Ewelina Rubin mobilizing the R/V Roger Revelle for EXPORTS. Credits: University of Rhode Island/Menden-Deuer Lab

Unforeseen and challenging obstacles such as this are common at sea. While it might seem simple, there are many fine details involved in preparing for a cruise. Think about the average science classroom: there are various instruments and glassware, as well as other fundamental components such as water sources, sinks, safety equipment, and more. You have to think about where all of these items will go on the ship, how to secure them for the natural movements of the ship at sea, etc.

Some things are simpler, such as determining how many bottles you need for an experiment, while others are more complex, like transporting a large, expensive instrument across the country that will undergo constant motion and likely rough, stormy seas. While this process is stressful for some, it is truly one of my favorite parts of a research cruise.

Scientific equipment on the dock waiting to be loaded onto the research vessels. Credits: University of Rhode Island/Menden-Deuer Lab

No matter how prepared scientists are, unexpected things always happen at sea, including 12-foot swells sloshing up against the side of the boat. That might not seem like much for an avid surfer, but for research vessels these waves can be felt instantaneously by members. I remember my last research cruise, when we hit a wave a bit larger than I expected. I was performing an experiment and zoom, all of the bottles starting sliding across the table. Here I was trying to catch them while holding my stance. In times like these, I truly appreciated that the tables were screwed into the walls, and the boxes under tables were held in place with ratchet straps.

Wet-lab setup on a prior research cruise containing filtration systems tied down to the tables and carboys and boxes bungeed to the ship for safety during transport. Credits: University of Rhode Island/Menden-Deuer Lab

There are so many components to think about before going to sea in addition to the simple things, like remembering to bring a toothbrush and an extra changes of clothes. Staying organized is key. I cannot imagine trying to pack all of our equipment without the handy packing list we prepared.

But more importantly, some advice for anyone preparing for a research cruise: be flexible, be prepared (well, the best that you can be), and be excited. The thrill and excitement from performing research on a ship is extraordinary, something to truly embrace. Even if those long days and nights packing seem never-ending, just remember it will be worth it and one of the most incredible learning experiences of your life. To everyone aboard the EXPORTS cruise, fair winds and following seas. The packing is done and now you have made it to the best part—researching at sea.

The port in Seattle, Washington, from which the R/V Roger Revelle and the R/V Sally Ride embarked for the northeastern Pacific Ocean. Credits: University of Rhode Island/Menden-Deuer Lab

Just Sit Right Back and You’ll Hear a Tale, a Tale of a Plankton Trip

A mixed phytoplankton community. Credits: University of Rhode Island/Stephanie Anderson

by Dave Siegel / SEATTLE, WASHINGTON /

I am Dave Siegel, a professor of marine science at the University of California, Santa Barbara. I have been working for many years to implement  the Export Processes in the Ocean from Remote Sensing (EXPORTS) oceanographic campaign: a coordinated field effort to understand the interactions between life in the sea and Earth’s carbon cycle.

Last Thursday night, I watched “my baby” of a campaign sail away, as the Research Vessel Sally Ride left Pier 91 in Seattle for the northeastern Pacific Ocean.

While I am the science lead for EXPORTS, it’s not just my baby—it is truly a group effort. Two teams of scientists created the EXPORTS science and implementation plans, with a lot of input from the greater oceanographic community. The result is a campaign comprising more than 50 funded NASA and NSF investigators from nearly 30 institutions and many graduate students, postdocs and technicians, all excellently supported by the masters and crews of two Scripps Institution of Oceanography’s research vessels: the R/V Roger Revelle and the R/V Sally Ride.

The R/V Sally Ride, operated by the Scripps Institution of Oceanography, anchored at Pier 91 in Seattle before departing for the northeastern Pacific Ocean on Thursday, Aug. 9. Credits: NASA/Katy Mersmann

EXPORTS aims to develop a predictive understanding of the interactions of life in the sea and Earth’s carbon cycle, which is critical for quantifying the carbon storage capacity of the global ocean. The oceans are Earth’s largest active reservoir, or storage, of carbon and carbon dioxide concentrations in the atmosphere and thus helps regulate our planet’s climate. This predictive understanding of the interactions of ocean life and the carbon cycle is especially important as we are seeing that our ocean ecosystems are changing in response to changes in Earth’s physical climate. To do this we need data to test and validate these satellite-based assessments and numerical model predictions.

We are trying to tackle a super hard problem—one I believe to be a true grand challenge in Earth System Science. Our approach is simply to follow the money. For ocean ecosystems, that currency is the energy stored in phytoplankton carbon from photosynthesis. The production of phytoplankton carbon is nearly balanced by its consumption by animals called zooplankton, which in turn provide the energy for the higher trophic levels of the sea, such as fisheries and charismatic megafauna (whales, seals, sharks, and the like).

A mixed phytoplankton community. Credit: University of Rhode Island/Stephanie Anderson

The slight imbalance—roughly 10 percent of phytoplankton production globally—drives an export of organic carbon from the well-lit surface ocean into the dimly-lit twilight zone beneath. Within the twilight zone, microbes and animals of all description consume this exported organic carbon, utilizing their energy for metabolism.  This export of organic carbon from the upper ocean and their consumption within the twilight zone, along with ocean circulation, shape the carbon storage capacity of the global ocean and frame the two major research questions for EXPORTS.

Constructing a field campaign to identify and quantify the flows of organic carbon through the ocean is, of course, a major challenge. Phytoplankton physiologists need to assess phytoplankton growth rates and responses to perturbations in their required nutrients (nitrogen, phosphate, silica & iron). Zooplankton grazing and the carbon cycle impacts of their daily vertical migration to the sunlit layer of the ocean from the twilight zone need to be assessed.

In the hydro lab aboard the R/V Roger Revelle, sampling tubes will collect water samples at varying ocean depths for analysis. Credits: NASA/Katy Mersmann

Sediment traps that catch the rain of sinking particles measure the flux of sinking carbon as well as make detailed geochemical measurements that test how well our measurements of the individual pathways reflect the large-scale mass budgets needed to build and test satellite and computational models. Optical oceanographers make ocean color measurements that link the EXPORTS datasets to NASA satellite data products.  And I feel bad that I left out so many other individual research activities going on, but mentioning each of them would take up another two paragraphs!

For EXPORTS, scientists are deploying robotic explorers, like these from the Applied Physics Lab at the University of Washington. They are traveling with the ships, taking measurements at various depths. Credits: NASA/Michael Starobin

The measurements needed to constrain the various food web and export pathways as well as adequately sample the highly variable ocean environment requires technologists that can overcome these challenges.  For example, the EXPORTS team includes robotics experts who build, deploy, and analyze data from an array of autonomous underwater vehicles (AUV) that sample ocean properties on time scales ranging from minute to years.

EXPORTS has also taken advantage of recent technological advances such as novel high-throughput microscopes and in situ imaging devices that take individual images of billions of phytoplankton cells as well as zooplankton and other various organic matter.  These images are then analyzed using advanced machine learning techniques to provide unique views of the structure of plankton communities.

Advancements are also available from the biomolecular sciences where metagenomic and bioinformatics approaches provide complementary ways to characterize plankton communities and their metabolism. Lastly, several projects include numerical modelers who will use computational approaches to help answer EXPORTS science questions.

The first EXPORTS field deployment will be to Station P (50N 145W) in the Northeast Subarctic Pacific Ocean. Station P (or PAPA) has been sampled and resampled over many decades—from as far back as 1949, when it served as an ocean weather station. Presently, Station P is the terminus of the Canadian Line P transect ocean research program and is an area of focus for the National Science Foundation’s Ocean Observatories Initiative project.

Last week, the R/V Roger Revelle and the R/V Sally Ride sailed to Station P. Both are floating laboratories that enable our research, but they will have different missions.  The R/V Roger Revelle will make detailed rate measurements and conduct a wide variety of experiments while the R/V Sally Ridewill make spatial surveys around its partner ship to assess the three-dimensionality of these processes.  These ship-based measurements will be supplemented by the array of AUVs.  Both ships and robots will make ocean optical measurements linking the EXPORTS field data to present and future NASA ocean color satellite missions.

Graphic representation of the Northeastern Pacific Ocean deployment for EXPORTS. Credit:

EXPORTS is also planning a second field deployment in the North Atlantic Ocean in the spring of 2020 to provide contrasting data. Furthermore, NASA has supported a group of Pre-EXPORTS projects aimed at mining available, relevant data sources for use in EXPORTS synthesis analyses and to conduct modeling experiments to help plan this and the North Atlantic expeditions.

So I’m the science lead but I’m not sailing. Seems weird, but early in our planning we were worried about the coordination between all of the things going on. My job back home now is to help coordinate activities on the two ships and assist the four co-chief scientists in fouling off whatever curveballs that may come. I’m sure they will provide blog posts soon introducing themselves.

It is been a long time coming and I realized that as the R/V Sally Ride was sailing away. I have been there from the start pushing this along, so I suppose it is “my baby.”  I do want to thank all involved in the planning and implementation, including the program officers at NASA and NSF.

Further information about EXPORTS can be found at the NASA EXPORTS expedition team blog and the EXPORTS website.

Students Study Earth Systems on NASA’s DC-8

Student Airborne Research Program (SARP) participant Arie Feltman-Frank aboard the DC-8 monitoring air pollution on June 25, 2018. Credits: NASA/Megan Schill

by Arie Feltman-Frank / NASA ARMSTRONG FLIGHT RESEARCH CENTER, PALMDALE, CALIFORNIA /

My name is Arie and I am a 21-year-old student at the University of Denver studying environmental science. I am one of 28 students selected to participate in NASA’s Student Airborne Research Program, or SARP, an eight-week summer internship program that exposes undergraduate students to all aspects of airborne science campaigns, including data collection techniques and data analysis. Students from diverse STEM backgrounds were placed into four research groups—atmospheric chemistry, ocean remote sensing, land remote sensing, and whole air sampling—and they must complete and present a research project by the end of the summer.

I grew up in Lincolnshire, Illinois, and since a young age I have been fascinated by the scientific processes that influence our planet. I believe that every human has the right to live a meaningful and purposeful life predicated on the existence of certain universal guarantees, such as clean air to breathe, safe food and water to eat and drink, and preserved natural areas. Those values align with SARP and almost all other NASA Earth Science campaigns, as their main objective is to collect accurate and high-quality data about the land, ocean, and atmospheric properties of Earth to understand how our world is changing.

SARP participants, pilots, and flight specialists after their third and longest flight on the DC-8 on June 26, 2018. Credits: NASA/Megan Schill

For this campaign, we were seated in NASA’s DC-8 flying laboratory, a unique plane with scientific instruments protruding from the windows. NASA’s DC-8 is not like any traditional commercial airline flight. It was once a commercial airliner but was repurposed by NASA’s Earth Science Division and is now one of the best research aircraft in the world for conducting airborne science. Prior to my flight, the aircraft completed flights for NASA’s Atmospheric Tomography Mission (ATom), an around-the-world airborne science campaign dedicated to studying the impact of human-produced air pollution on greenhouse gases and on chemically reactive gases in the atmosphere.

On this particular flight, we had instruments that measured the presence and relative concentrations of important atmospheric gases over regions in southern and central California, including the San Joaquin Valley. I could hear the faint crescendo of the aircraft’s engine and full-blast air conditioning system through my noise-canceling headphones. The scientists, flight engineers, and pilot talked over the on-board communication system. I listened intently to the scientists as they updated the crew on their instruments.

SARP participants Sujay Rajkumar and Kiersten Johnson on board the DC-8 operating Whole Air Sampling instrumentduring a science flight on June 26, 2018. Credits: NASA/Megan Schill

The aircraft flight path and maneuvers depend on the goals of a particular scientific mission. On this six-hour flight, we undertook spirals, loops, and Meteorological Measurement System (MMS) maneuvers, which are important for understanding the aerodynamics of the aircraft and its effects on measurements such as pressure, winds, and air flow. We also flew in turbulent conditions at various elevations and over diverse environmental gradients.

Student Airborne Research Program (SARP) participant Dallas McKinney, a meteorology major at Western Kentucky University, aboard the DC-8 experiencing the cockpit during a June 26, 2018 science flight. Credits: NASA/Megan Schill

That being said, it may come as no surprise that my DC-8 flight was as turbulent as it was long; I actually ended up getting pretty motion sick on the mission. Getting sick is a sacrifice some make to collect the necessary data. Despite not feeling well, I was surrounded by passionate students, scientists, engineers, and flight specialists all cumulatively working to advance one of NASA’s core missions: to understand and protect our home planet.

I am excited to see all of the diverse and interesting projects that SARP 2018 will embark and present on at the end of the summer. I couldn’t ask to be in a better place or time here at NASA working with and being mentored by some of the best minds in the field.

Five Ways Hurricanes Have Affected Puerto Rico’s Forests

A stream cuts through El Yunque National Forest in northeastern Puerto Rico. The image, captured in May 2018 by Goddard’s Lidar, Hyperspectral, and Thermal Imager (G-LIHT), reveals an open canopy. The forest floor, once cloaked in heavy shade before Hurricane Maria, now receives direct sunlight. Credit: NASA

by Samson Reiny / PUERTO RICO /

Last September 2017, Hurricanes Irma and Maria hit Puerto Rico, knocking out critical infrastructure and ransacking the island’s forests. This April and May, a team of our scientists took to the air to take three-dimensional images of Puerto Rico’s forests using Goddard’s Lidar, Hyperspectral, and Thermal Imager (G-LIHT), which uses light in the form of a pulsed laser. By comparing images of the same forests taken by the team before and after the storm, scientists will be able to use those data to study how hurricanes change these forest ecosystems.

Here are five ways scientists say the hurricanes have changed Puerto Rico’s forests since making landfall eight months ago: 

1. The Canopy Is Bare

The now open canopy in Puerto Rico’s El Yunque National Forest. Credit: NASA/Samson Reiny

One word defines the post-hurricane forest canopy in El Yunque National Forest: Open.

“The trees have been stripped clean,” said NASA Goddard Earth scientist and G-LiHT co-investigator Doug Morton, who returned to the forest in April to gather measurements of trees on the ground to complement the airborne campaign’s lidar work. He was there a year ago, months before the hurricanes would ravage the area. He pointed out that from the mountainside he could see downtown San Juan, which is 45-minutes away by car.

And no canopy means no shade. “Where once maybe a few flecks of sunlight reached the forest floor, now the ground is saturated in light,” Morton said, adding that such a change could have profound consequences for the overall forest ecosystem. For example, some tree seedlings that thrive on a cool forest floor may whither now that daytime temperatures are as much as 4 degrees Celsius (7 degrees Fahrenheit) hotter than they were before the hurricane. Meanwhile, as we shall see, other plants and animals stand to benefit from such changes.

“Who are the winners and losers in this post-hurricane forest ecosystem, and how will that play out in the long run? Those are two of the key questions,” said Morton.

2. Palms Are on the Rise

Sierra Palms withstood the powerful hurricane winds better relative to hardwood tree species. Credit: NASA/Samson Reiny

One species that’s basking in all that sunlight is the sierra palm, said Maria Uriarte, a professor of ecology at Columbia University who has researched El Yunque National Forest for 15 years. “Before, the palms were squeezed in with the other trees in the canopy and fighting for sunlight, and now they’re up there mostly by themselves,” she said. “They’re fruiting like crazy right now.”

The secret to their survival: Biomechanics.

“The palm generally doesn’t break because it’s got a flexible stem—it’s got so much play,” Uriarte said. “For the most part, during a storm it sways back and forth and loses its fronds and has a bad hair day and then it’s back to normal.” By contrast, even neighboring trees with very dense, strong wood, like the Tabonuco, were snapped in half or completely uprooted by the force of the hurricane winds.

“Palm trees are going to be a major component of the canopy of this forest for the next decade or so,” added Doug Morton. “They’ll help to facilitate recovery by providing some shade and protection as well as structure for both flora and fauna.”

3. Vines Are Creeping Opportunists

Lianas are woody vines that climb trees and compete with them for sunlight at the canopy level. Credit: NASA/Samson Reiny

Rising noticeably from the post-hurricane forest floor of El Yunque National Forest are woody vines called lianas. Rooted in the ground, their goal, Morton says, is to climb onto host trees and compete for sunlight at the top. That, combined with the fact that their weight tends to slow tree productivity potential, means they are literally a drag on the forest canopy. As lianas can wind their way around several trees, regions with more of these vines tend to have larger groupings of trees that get pulled down together.

“There’s some indication that vines may be more competitive in a warmer, drier, and more carbon dioxide-rich world,” Morton said. “That’s a hypothesis we’re interested in exploring.”

4. Endangered Parrot Populations Took a Hit

The Iguaca parrot is the only native parrot left in Puerto Rico and is an endangered species. Credit: U.S. Fish and Wildlife Service/Danna Liurova

The Iguaca is the last living native parrot species of Puerto Rico. Deforestation from agriculture brought the population to its knees, but as forests have reclaimed much of the land over the past 50 years, the U.S. Fish and Wildlife Service’s Iguaca Aviaries have been working to restore their numbers by breeding and releasing the parrots into the wild.

The island’s two Iguaca aviaries have reported a substantial number of deaths in the wild due to the hurricanes. In the forests of Río Abajo, in western central Puerto Rico, about 100 of the roughly 140 wild parrots survived; in El Yunque National Forest in the eastern part of the island, only three of the 53 to 56 wild parrots are known to have pulled through.

“It was a huge blow,” said the U.S. Fish and Wildlife Service’s Tom White, a parrot biologist stationed at the aviary in El Yunque, which took the brunt of Hurricane Maria’s Category 5 winds. Some of the parrots died during the storm—from being thrashed around or being hit by falling tree limbs, for example, while others likely died from increased predation from hawks because there were no longer canopies for them to hide in. The rest succumbed to starvation. The Iguaca subsists on flowers, fruits, seeds, and leaves derived from more than 60 species—but for several months following the storm, the forest was completely defoliated.

Despite the setback, White said he’s optimistic that the Iguaca will rebound. In Río Abajo, the number of wild Iguaca are enough that they should rebound on their own. In El Yunque there are about 227 birds at the aviary—a strong number for continued breeding and eventual release into the forest once conditions improve enough. “One of their main fruit comes from the sierra palm, and they’re now flowering and starting to produce again,” White noted. “It’s probably going to take about another year for things to level out, but the forest is gritty.” 

5. Lizards and Frogs: A Mixed Response

When Hurricane Maria stripped the leaves off of trees, changes in the forest microclimate instantly transformed the living conditions for lizards and frogs. Species have reacted differently to the event based on the conditions they are adapted to, said herpetologist Neftali Ríos-López, an associate professor at the University of Puerto Rico-Humacao Campus.

This adult Emerald Anole lizard was found on a tree trunk close to the forest floor. The species traditionally prefers the canopy for its dryness and warmth, but defoliation from the hurricanes have extended that type of microclimate all the way to the forest floor. Credit: NASA/Samson Reiny

For example, some lizard species are naturally suited to the forest canopy, which is warmer and drier. “After the hurricane, those conditions, which were once exclusive to the canopy, have now been extended down to the forest floor,” Ríos-Lopez said. “As a result, these lizards start displacing and substituting animals that were adapted to the once cooler conditions on the forest floor.”

The Red-eyed cocqui’s ability to live in dry, warm areas has allowed the species to expand their range to higher elevation forests. Credit: U.S. Geological Survey

Coqui frogs, notable for their bisyllabic chirps, are the dominant frogs in Puerto Rico, which is home to 17 coqui species. Among them, the red-eyed coqui, with its resistance to temperature and humidity fluctuations and its ability to handle dehydration better than other species, has benefited from the warmer, drier conditions in the forests after the storm. Traditionally a grassland species, they are expanding from the lowlands to the middle and higher parts of the mountains, Ríos-Lopez said. “Physiologically, what was a disadvantage for that species when the whole island was forested now finds itself in a positive position.” Conversely, forest-acclimated coqui frog species have declined.

All that being said, complexities abound, cautioned Ríos-Lopez. Hurricane Maria seems to have had little impact on some coqui species that live on the forest floor despite the increases in temperature and the drier air, for instance. And before Maria, another major event occurred that will have to be counted as a factor in the current landscape: a drought that lasted from 2015 to 2017. “Many of these animals were also suffering from the drought, particularly the upland forest frogs,” he said. “That event is working in synergy with the impacts from Hurricane Maria.”

That said, as the forests recover, so will many of the species whose numbers have dwindled following the storms. “It will take many years, decades, I would guess,” Ríos-Lopez said.

Our scientists are working with partners from universities and government to use G-LiHT data to inform ground research on forest and other ecosystems not only in Puerto Rico but also throughout the world. To follow their campaigns and keep up with the latest news, find them here: https://gliht.gsfc.nasa.gov.

Cloudy with a Chance of Chemistry

The Atmospheric Tomography, or ATom, mission is investigating the atmosphere above the remote oceans. Above the Atlantic ocean near Ascension Island, the research team saw haze from African fires during ATom’s February, 2017, flight. Credit: NASA

by Ellen Gray

The most important question at the daily briefing for NASA’s Atmospheric Tomography, or ATom, mission is: What are we flying through next?

For the 30 scientists plus aircraft crew loaded up on NASA’s DC-8 flying research laboratory on a 10-flight journey around the world to survey the gases and particles in the atmosphere, knowing what’s ahead isn’t just about avoiding turbulence. It’s also about collecting the best data they can as they travel from the Arctic to the tropics then to the Antarctic and back again.

ATom’s flight path over the oceans. Credit: NASA

“ATom is all about the up and downs,” said Paul Newman, lead of the ATom science team and chief scientist for Earth Sciences at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The ups and downs he’s referring to are slow descents from 40,000 feet to 500 feet above the ocean so the researchers aboard can sample the atmosphere at all altitudes in between. That’s not a maneuver the pilots will do if they can’t see what’s below or ahead of them, but the measurements are why the team is out there.

The DC-8 makes a series of dips to the surface during each leg of the flight to sample air at all altitudes. Credit: NASA

Which is why to find out what they might encounter and safely plan their flight path, it takes a team back home in their offices supporting them with freshly downloaded satellite data, updating forecasting models, an internet connection and phone. The pre-flight briefing takes place at 9 a.m. where the plane is, so for the forecasters calling in from Colorado, Virginia, and Maryland, it often means working late or early to brief the mission scientists and pilots at their hotel. And then when the flight takes off, one of them is in the plane’s private satellite chat room giving them live updates while the plane is in the air.

Weather is of course the big concern. The pilots of the DC-8, which in another life was a mid-sized passenger plane, need to know where the fair and foul weather is.

“Just cutting across the equator, what do you do?” Newman said. “You just fly through those thunderstorms? Or is it better to go west or east around a particular convective cell? You don’t want to get trapped. We don’t want to spend a lot of time flying through a thick cloud. It screws up your measurements, clogs up your air intakes. So with real-time meteorological support, it creates a level of comfort for the team and pilots to know that there won’t be any surprises.”

View from the DC-8 above the Pacific Ocean, Feb. 2017. Credit: NASA/Róisín Commane

Weather isn’t the only forecast the team gets before and during the flight. They also get a forecast of the atmospheric chemistry. From supercomputers at Goddard, a computer simulation of Earth projects the paths of carbon monoxide plumes. Carbon monoxide is one of over 400 gases being measured aboard the DC-8, but since it’s the result of incomplete combustion, whether from cars, power plants, wild fires or agricultural fires, it’s one of the simplest for the computer to track. Like a weather forecast, the chemical forecast takes current satellite data of carbon monoxide and then uses winds and temperature to project where it will go into the future – and where the DC-8 aircraft might encounter it on flight day.

“It’s fun to see during the flight whether or not some of these forecasts are realized,” said Julie Nicely of the chemical forecast team. “The person who measures carbon monoxide, for instance, might get on the chat and say, ‘Oh, we just saw CO [carbon monoxide] rise right where you said it would!'” Where turns out to be the easier question to answer. How much of it there is and what other gases occur with and react with it to turn into other gases are much more difficult questions and are among the reasons ATom’s science team is flying through these plumes of pollution.

Carbon monoxide isn’t the only gas whose intermingling with other atmospheric chemistry is being studied. When Nicely’s not supporting ATom she’s researching the hydroxyl radical, a chemical that lasts for a fraction of a second before reacting with other gases in the constantly churning chemistry of the atmosphere. It’s impossible to simulate in the model at the moment, and ATom’s flights are the first time its concentration, along with hundreds of other gases, is being measured on a global scale.

What the science team learns from these flights will go toward not only understanding the chemistry along the strip of the ocean their plane flew over but also improving the atmospheric chemistry models that are a tool for looking at what’s happening across the entire globe.

Team Sea Ice or Team Land Ice?

Above Greenland, where land ice meets sea ice and some open water. Credit: NASA/Linette Boisvert

by Linette Boisvert / Kangerlussuaq, Greenland /

Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and researcher with Operation IceBridge. The mission of Operation IceBridge, NASA’s longest-running airborne mission to monitor polar ice, is to collect data on changing polar land and sea ice and maintain continuity of measurements between ICESat missions. 

For more about Operation IceBridge and to follow future campaigns, visit: http://www.nasa.gov/icebridge

I am lucky enough to get to travel to Kangerlussuaq—a small town on the southwestern coast of Greenland that means “big fjord” in the Kalaallisut language—to join NASA’s Operation IceBridge for the remainder of their Arctic spring campaign.

Map of Greenland showing the location of Kangerlussuaq. Credit: Google Maps

I landed in Kanger on the morning of Friday, April 20, after leaving Washington, D.C., Wednesday evening, flying and overnighting in Copenhagen, Denmark, and then taking an Air Greenland flight, crossing the Atlantic Ocean twice in less than 36 hours. (Fun Fact: Greenland is owned by Denmark, so flying through Copenhagen is the only way to get to Greenland commercially.) The flight was on an Airbus, which had a surprisingly large number of passengers aboard.

After landing I thought, hmm, why do all of these people want to go to Kanger? Kanger is a small, roughly 500-person town comprising buildings surrounding the airport. There is a grocery store, a coffee/ice cream shop that never appears to be open, a youth “jail” for all of Greenland, and a Thai restaurant that is known for its pizza. Odd.

View of the town of Kanger from across the river. Credit: NASA/Linette Boisvert

Regardless, Kanger is pretty, being situated in the fjord valley with a river running through it, although currently it is frozen solid. It is also warmer here than I would have expected for Greenland, with highs in the upper 20’s to low 30’s. For the rest of the campaign, until May 4, I will be in Kanger, with the rest of my “OIB family,” as I call them, living in dorm-style housing and cooking family-style dinners together just about each night.

Build your own pizza for dinner in our dorm-style housing in Kanger. Credit: NASA/Linette Boisvert

April 21 was our first science flight out of Kanger, and as with the rest of the flights from here, it was a land ice flight. Sidebar: I am a sea ice scientist and have never been on a land ice flight before. There is a friendly rivalry between the land ice and sea ice scientist community (go Team Sea Ice!), and it is clear here that I am the only sea ice fanatic aboard, so I get picked on a bit. For those of you who don’t know, sea ice is frozen seawater that floats around on the ocean, and land ice is snow that is compacted over many, many years and turns into ice and is located on the bedrock of Greenland. Sea ice = salty (good in a margarita), while land ice = fresh (good in a smoothie).

NASA P-3 aircraft propellers outside the hangar in Kangerlussuaq, Greenland. Credit: NASA/Linette Boisvert
Photo showing land ice (bottom left corner) flowing down through the channel in the (center), and sea ice (bottom right corner). Credit: NASA/Linette Boisvert

It is not surprising to say that they really wanted to convert me to Team Land Ice, and they couldn’t have chosen a more scenic flight for this attempt. The flight is named Geikie 02 and highlights eight glaciers on the Geikie Peninsula on the eastern coast of Greenland.

Screen shot of the “Geikie 02” flight line mid-flight. Credit: NASA/Linette Boisvert

Glaciers are slow-moving rivers of ice, where land ice from the Greenland Ice Sheet is transported into the oceans or sea ice pack depending on location and time of year. As the ice gets forced into these channels and around bends, it cracks, making crevasses, similar looking to crocodile skin (or the skin on your elbow) at times.

Crevassed land ice in the foreground and Greenland mountains behind. Photo credit: NASA/Linette Boisvert

These glaciers have carved out deep channels and fjords in the bedrock over time, making for awe-inspiring views and terrain, especially when you are flying in the P-3 plane at just 1500 feet. There were many times where I would look out the window and see mountains reaching high above us as we flew over the glaciers deep in the fjord valleys and other times where it felt as it we were just skimming the tops of the mountains. This is not something that normally happens on commercial airline flights and is not for the faint of heart, but it is spectacular to behold, and I felt truly lucky to be able to witness this magnificent place.

As we flew out of the fjord to where both land ice and land meets sea, I instantly became overjoyed to view the sea ice (go Team Sea Ice!): all thicknesses, broken up, ridged, consolidated and flooded along with numerous leads and icebergs, which are land ice deposited into the ocean from the glaciers. Sea ice on a land ice flight? I think I could get used to this.

An iceberg surrounded by sea ice. Credit: NASA/Linette Boisvert
Sea ice floes, openings, and leads. Photo credit: NASA/Linette Boisvert
Where sea ice meets Greenland’s cliffs and mountains. Credit: NASA/Linette Boisvert

As we crossed the fjords and the sea ice, we noticed multiple polar bear tracks in the snow (likened to a “polar bear highway”), and multiple holes in the sea ice where seals will come out for air and rest. A few people even claimed they saw a polar bear running on the sea ice after being startled by our plane flying over, but I didn’t see it and I am skeptical. Another highlight of this flight was flying past Greenland’s tallest mountain, Gunnbjorn, which rises 12,000 feet, and the “Grand Canyon of Greenland” – the one not covered by kilometers of ice in the center of the ice sheet that data from a previous IceBridge campaign had recently discovered. Needless to say, I was glued to my window for the majority of this flight. These pictures just don’t do them justice.

Flying in a fjord valley with the mountains above us. Credit: NASA/Linette Boisvert

Although this flight did not convert me to Team Land Ice, it did reiterate to me that all ice types matter, especially in the broader context of climate change, and it is the main reason for the IceBridge field campaign: to repeatedly gather data of both land and sea ice to determine where, how, and why both ice types are changing. Specifically, melting land ice flows into the ocean and contributes to global sea level rise, whereas the loss of sea ice affects ocean and atmospheric circulation patterns both locally and globally, reminding us that what happens in the Arctic doesn’t stay in the Arctic.

Operation IceBridge Test Flights Part 2: From ‘Sick Sacks’ to Cloud Nine

NASA’s P-3 Orion research aircraft landing back at NASA Wallops Flight Facility. Credit: NASA/Aaron Wells

by Linette Boisvert / NASA WALLOPS FLIGHT FACILITY, VIRGINIA /

Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and researcher with Operation IceBridge. The mission of Operation IceBridge, NASA’s longest-running airborne mission to monitor polar ice, is to collect data on changing polar land and sea ice and maintain continuity of measurements between ICESat missions. This blog describes test flight activities before the mission’s spring Arctic ice survey, which began on March 22 and will be ongoing through most of April.

For more about Operation IceBridge and to follow future campaigns, visit: http://www.nasa.gov/icebridge

Thursday, March 15, 2018

I woke up not as optimistic as the morning before. With the previous flight’s turbulence and motion sickness, I was not looking forward to some of the maneuvers that we were going to do. But I reluctantly went back to Wallops and got back on NASA’s P-3 Orion research aircraft. The plane was a lot less crowded for the radar test flights. A few of my friends poked fun at my vomiting on the previous flight, and I jabbed back, saying, “Take a cookie, they taste just as good going down as they do coming back up.” Yes, I still had cookies to dole out. After this, I immediately went to the cockpit to apologize to the pilots and flight engineer for puking where they work.

The P-3 Orion hanger at NASA Wallops Flight Facility. Credit: NASA/Linette Boisvert

This flight was to test the Center for Remote Sensing of Ice Sheets (CReSIS) radar. The CReSIS radar on OIB is used to determine the thickness of the snow pack on top of the sea ice and the different accumulated layers of snow on the Greenland Ice Sheet. The flight would be six hours in duration and would fly south to Norfolk, Virginia, then turn due east and head 200 miles out to sea to do the maneuvers that were required by the radar teams. These maneuvers consisted of slow rolls, quick, 60-degree rolls at 1 degree per second, and elevation-change maneuvers (ups and downs). Those aboard assured me that this flight would be much smoother due to the higher altitude (~20,000 feet) and the fact that we would be flying over the ocean.

They did not disappoint! This flight was smooth and unlike any flight I have ever experienced. I spent a lot of time in the cockpit for the best views and also because it was much warmer there than the rest of the plane. I must admit, I was a little nervous that I might have motion sickness again, but thankfully I did not. I began talking with the P-3 flight engineer Brian Yates and he let me sit in his seat for about 30 minutes. This is the best seat in the house—in the middle of the cockpit—and might I add that it reclines! This is a luxury not afforded to ANY of the other seats on the P-3.

Lynette Boisvert smiles for the camera while in the flight engineer’s seat in the cockpit of the P-3.
Credit: NASA/Jeremy Harbeck

The first time they did a rolling maneuver you could feel the g-force on you, and as the blood was being pushed from your head, it felt as if you could not move your feet from the ground. It was a very interesting feeling and I felt a little like an astronaut. For the faster, 60-degree rolls, they had me stay in the cockpit. I was a little nervous for what I was in for.

Pilot Mike Singer executing a 60-degree roll maneuver. Credit: NASA/Jeremy Harbeck

These rolling maneuvers were kind of like being on a carnival ride, and the back-and-forth lulling motions kind of made me feel like I was being rocked to sleep. During this time, I looked back from the cockpit into the rest of the plane and noticed on John Sonntag’s computer our flight line, or as John puts it, “the pilots are drunk” type of flight path, and laughed.

The P-3’s propellers during a rolling maneuver. Credit: NASA/Jeremy Harbeck
The flight path during the roll maneuvers.
Credit: NASA/John Sonntag

Afterward were the up and down maneuvers at different elevations. Again, I was seated in the cockpit, and this felt more like being on a rollercoaster. What I thought was the most interesting aspect of this maneuvering was flying into the cumulus—puffy, cotton candy clouds—and getting to experience it head-on from the cockpit. The updrafts and downdrafts present in the clouds, produced by the mixing of air causing condensation and creation of water droplets to sustain themselves, made for a little turbulence, although nothing like what was witnessed on the prior flight. During landing I was able to sit on my ledge in the cockpit, which is always a thrill. Luckily, the landing was smooth and we were back at Wallops Flight Facility.

Throughout all of this the CReSiS radar teams were working frantically, all huddled around the workstation of remote sensing expert John Paden from the University of Kansas. It appeared as if they were having problems, but if they were, they must have resolved any issues because radar data were successfully collected and calibrated during the flight.

As Melinda and I drove back to NASA Goddard Space Flight Center, located in the concrete jungle of the D.C.-Maryland suburbs, much different from the coastal, rural area surrounding Wallops, we reminisced how much fun the test flights were and how it is always so fascinating to see exactly how the instrument teams work and how the data are collected—data that we use to study the rapidly changing conditions of the Arctic sea ice.

It is also so inspiring to see how dedicated these people are to their jobs and to the OIB mission itself. They spend multiple months away from home in the Arctic and Antarctic, collecting data for scientists and the public to use. During this time they become a family, a cohesive unit, working together to complete successful flights. In some ways, they are like P-3 cowboys riding into the great unknown, wrangling this vastly important data for those of us sitting behind a desk on the ground to use and study. They are the true heroes, and for this we are truly grateful.

Operation IceBridge Test Flights Part 1: ‘Sick Sacks’ for Science

Sunrise from over Wallops Island. Photo credit: NASA/Linette Boisver

by Linette Boisvert / NASA WALLOPS FLIGHT FACILITY, VIRGINIA /

Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and researcher with Operation IceBridge. The mission of Operation IceBridge, NASA’s longest-running airborne mission to monitor polar ice, is to collect data on changing polar land and sea ice and maintain continuity of measurements between ICESat missions. This blog describes test flight activities before the mission’s spring Arctic ice survey, which began on March 22 and will be ongoing through most of April.

For more about Operation IceBridge and to follow future campaigns, visit: http://www.nasa.gov/icebridge

Wednesday, March 14 2018

Kyle Krabill calibrating GPS on the P-3. Photo credit: NASA/Jeremy Harbeck

I woke up early Wednesday morning at our shared “beach house” to make coffee and was greeted with a beautiful sunrise from the front porch over Wallops Island and the NASA water tower in the distance. Sipping on my coffee, I had high hopes that this was going to be a great day. Coincidentally, Kyle Krabill, Airborne Topographic Mapper (ATM) ground GPS guru, and John Sonntag, the legend and the man behind why the Operation IceBridge (OIB) missions run so smoothly, were at the Wallops Flight Facility doing a calibration of the NASA P-3 Orion research aircraft’s GPS antenna.

My colleague and friend Melinda Webster and I arrived at Wallops at 8 a.m. on this clear, brisk and windy morning, driving around the grounds trying to find the D-1 hangar. However, it didn’t take us long to find it, as we saw the tail of the P-3 sticking above a few buildings. We headed over and immediately saw Jeremy Harbeck, OIB’s resident photographer, data analyzer and pun-master coming out of the hanger door with a big smile on his face to greet us. Inside, we watched an informative, somewhat corny pre-flight safety video (don’t wear open-toed shoes or heels on the plane) before the flight.

NASA’s P-3 Orion research aircraft on the tarmac at WFF. Credit: NASA/Jeremy Harbeck

After the video, we were free to board the plane, and as we walked on the tarmac, careful to mind the P-3’s propellers, we noticed the wind had picked up significantly. In hand, I carried homemade sugar cookies shaped like airplanes, decorated in red and green icing with words like “ATM” and “OIB”; red and green to signify the red and green lasers on the ATM. With these cookies, I was determined to win over the instrument team members, pilots and flight crew who I did not know well and to put smiles on everyone’s faces. I wanted to come out of my shell and get to know everyone and learn how the teams worked. As I was handing out cookies, each engineer and flight crew stopped what they were busily working on to chat and munch on the cookies before getting back to it. Everyone on the plane was frantically working and knew what they had to accomplish before the flight. As we were hanging out in the plane we noticed that the strong winds that had picked up since the early morning were causing the plane to shake. No big deal, we thought.

Homemade airplane cookies. Credit: NASA/Linette Boisvert

 

Pre-flight activities aboard the P-3. Credit: NASA/Linette Boisvert

The day’s two-hour flight would be to test the ATM lasers and the Digital Mapping System (DMS) camera in order to make sure that they were calibrated in the air on the plane for the science flights over Arctic sea ice and the Greenland Ice Sheet. We would fly 1,500 feet above the surface along the coast to Bethany Beach, Delaware, back south over the ocean to a buoy measuring wave height (for scientists at the University of Washington’s Polar Science Center, because science never stops, after all), and then a series of six “ramp passes” at different altitudes over the Wallops Flight Facility runway, where highly accurate ground GPS surveys have been taken for calibration. ATM surface elevation data are used to infer the thickness of the sea ice pack from the “freeboard”—how high the Arctic sea ice extends above the ocean surface—and for surface elevation changes and mass loss from the Greenland and Antarctic Ice Sheets.

View of the Atlantic Ocean and eastern Shore of Maryland.
Photo credit: NASA/Linette Boisvert

The P-3 took off as it normally would, as I’ve been on it a few times before with OIB, with a little bumpiness; however, once we were up at 1,500 feet the turbulence did not go away. Not thinking much of it, Melinda and I had moved to a window to watch the coastline below (it was very odd to NOT view sea ice out of the P-3 window) when I began to feel a little bit funny, despite everyone around me looking fine and happy.

NASA Wallops Flight Facility during a ramp pass. Credit: NASA/Alexey Chibisov

Now, flights over sea ice are not very turbulent because the boundary layer over the ice is often very stable due to the small contrast in temperatures between the cold ice surface and cold air above. However, 1,500 feet above the land and so near the Atlantic Ocean, there are drastic temperature differences between these surfaces, both ocean and land and also the air above. Mix that with strong winds and sunny conditions warming the surface, and you get thermals and instability with the air in the boundary layer. In simple terms, this means lots of turbulence, and lets just say I was not used to it.

So I was beginning to feel pretty queasy, and I was wondering what this feeling was since I have never experienced motion sickness before. I tried not to think about it and snapped a few photos of the coastline and of some ATM instrument team members lying on the floor of the P-3 reaching underneath the floor to performing an optical alignment of the T7 ATM laser. (This photo would be likened to a crime scene photo. What do you think?)

‘Crime Scene’ ATM team members hard at work in flight. Credit: NASA/Linette Boisvert

Taking pictures was not making the feeling in my stomach go away. With this feeling growing worse, I asked Melinda, still smiling and happy, if she could find me a container to “lose my breakfast” in. She came back quickly with “sick sacks,” as they are called, thanks to the quick reaction time of Michael Studinger, a seasoned ATM and airborne veteran, and I was told to go in the cockpit and look at the horizon. It supposedly helps.

So I went and sat on my ledge in the cockpit, my usual spot during normal sea ice flights, but the motion sickness feeling was not letting up. Finally, I “let it go,” as a Frozen Disney princess once said. Up came my airplane cookie, which made its way into my sick sack right there in the cockpit. How embarrassing. On top of that, I was too afraid to move. After six torturous ramp passes and unending turbulence, we finally landed back at Wallops. The turbulence was no big deal to the pilots, underscoring, again, the seasoned veterans’ expertise.

Linette Boisvert with her ‘sick sack’. Credit: NASA/Melinda Webster

Needless to say, I was not sad that this flight was over, but I was pleased to hear that all of the instruments had no problem collecting data on the flight, which in large part was due to the instrument teams’ efforts. It is also clear to see that these people love their jobs and what they do so much that they are willing to—and even often do get—motion sickness on the plane and keep on chugging along.