Tag Archives: ACT-America

Sights from the ACT-America Winter Field Campaign

Posted on by .

by Joe Atkinson / HAMPTON, VIRGINIA /

Atmospheric Carbon and Transport-America, or ACT-America, wrapped up its winter field campaign Friday, March 10, with a final set of flights out of coastal Virginia.

The campaign, which is looking at how weather systems and other atmospheric phenomena affect the movement of carbon dioxide and methane in the atmosphere around the eastern half of the United States, began Feb. 1 with two weeks of flights out of Shreveport, Louisiana. The base of operations moved twice: to Lincoln, Nebraska, then to Virginia.

ACT-America employs two aircraft outfitted with several science instruments—a C-130 based at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore and a B-200 based at NASA’s Langley Research Center in Hampton, Virginia.

Principal Investigator Ken Davis of Penn State took lots of photos during the six-week field excursion. Here are a few of the sights he and a couple of the other team members captured. All photos courtesy of Davis except where noted.

Fire in the Southeast

Credit: Ken Davis

Credit: Penn State/Ken Davis

During a flight out of Shreveport, Davis took this picture of smoke rising from a fire somewhere in Alabama or Mississippi. According to Davis, there were a few fires in Gulf Coast forests in early February. Some of the most noteworthy ones were in Arkansas. “We did encounter elevated CO2 over Arkansas,” he said, “probably caused in part by the biomass burning we passed over.” 

Gulf Coast Flow

SONY DSC

Credit: Penn State/Ken Davis

Along the Gulf Coast, Davis took this photo of what he believed to be an offshore oil facility. Facilities like this one could be sources of methane, but ACT-America wasn’t specifically attempting to detect emissions from offshore oil. Of greater interest was air flowing from the Gulf of Mexico onto the continent. “There is often onshore flow from the Gulf across the midwestern and southeastern U.S.,” he said. “That was what we wanted to measure this day.” 

Squares of White

Credit:

Credit: Bing Lin

The campaign moved to Lincoln, Nebraska, in mid-February. During that midwest leg, a storm system brought a blanket of snow to the region, making for serene scenes like this one, photographed by Project Scientist Bing Lin.

Satellite Flight

Credit: Penn State/Ken Davis

Credit: Penn State/Ken Davis

Davis took this photo over the midwest during a flight to validate remote sensing data from the Orbiting Carbon Observatory-2 (OCO-2) satellite. OCO-2 uses near infrared reflection to make its measurements of carbon dioxide. Snow is dark in the near infrared, though, meaning it’s not reflective, so satellite validation flights like this one can help researchers see how well OCO-2 is working as it collects measurements while orbiting over snow-covered land.

Down and Outlaws?

Credit: Cate Easmunt

Credit: Cate Easmunt

During a down day in Lincoln, a few folks from the team toured a brewery that sits above a 5,000-square-foot cave. Pictured, from left to right, are Bill Ziegelbauer, Nathan Blume, Dirk Richter, Rebecca Pauly, Matthew Elder, Cate Easmunt, Mike Wusk and Greg Slover. According to a local legend, outlaw Jesse James may have used the cave as a hideout after a heist in Minnesota. No outlaws on the ACT-America team, though. They all left the cave after the tour was over. We think. Photo courtesy of Cate Easmunt.

Reunited and … You Know the Rest

Credit: Penn State/Ken Davis

Credit: Penn State/Ken Davis

During the Mid-Atlantic leg of the campaign, Davis posed for this photo at Wallops with Hannah Halliday of NASA Langley and Bianca Baier of the National Oceanic and Atmospheric Administration. Halliday and Baier, who had both been taught by Davis at Penn State, operated instruments on the flights. “I didn’t know we’d all be in the field together,” said Davis, “and I was smart enough to get a couple of photos.”

Coal Country

Credit: Penn State/Ken Davis

Credit: Penn State/Ken Davis

Flights over the Appalachian Mountains in southwest Pennsylvania and eastern West Virginia allowed ACT-America researchers to measure carbon emissions upwind and downwind of coal and gas extraction activities in the region.

Keeping Warm

Credit: Penn State/Ken Davis

Credit: Penn State/Ken Davis

ACT-America Project Manager Mike Obland of NASA Langley wears long sleeves to keep warm on one of the flights over the Mid-Atlantic. Even on relatively warm days, temperatures on the C-130 can get chilly, particularly at higher altitudes.

That’s a Wrap

Credit: Cate Easmunt

Credit: Cate Easmunt

As the winter field campaign came to a close in Virginia, team members posed for this group photo by the C-130. Photo courtesy of Cate Easmunt.

ACT-America will return for a second 2017 field campaign in the fall.

From One Seasonal Extreme to Another

Posted on by .
The crew of the C-130, including flight engineer Archie Archambault, foreground, prepare to depart Wallops for Shreveport, Louisiana — the first stop for ACT-America’s winter field campaign. Credit: NASA/Patrick Black

The crew of the C-130, including flight engineer Archie Archambault, foreground, prepare to depart Wallops for Shreveport, Louisiana — the first stop for ACT-America’s winter field campaign. Credit: NASA/Patrick Black

by Joe Atkinson / HAMPTON, VIRGINIA /

Last year, the first in a series of five flight campaigns for Atmospheric Carbon and Transport-America, or ACT-America, sent researchers into the field at the blazing peak of summer.

The flights were investigating how weather systems and other atmospheric phenomena affect the movement of carbon dioxide and methane in the atmosphere around the eastern half of the United States.

This year, those same researchers are doing it all again. And this time, they’re heading out during the deepest, coldest part of winter. Flights out of Shreveport, Louisiana, begin February 1. In coming weeks, ACT-America’s base of operations will move twice — once to Lincoln, Nebraska, and then to coastal Virginia.

A crew makes final preparations to NASA’s C-130H at Wallops Flight Facility on Virginia’s Eastern Shore ahead of ACT-America’s winter field campaign. Credit: NASA/Patrick Black

A crew makes final preparations to NASA’s C-130H at Wallops Flight Facility on Virginia’s Eastern Shore ahead of ACT-America’s winter field campaign. Credit: NASA/Patrick Black

So why trade one seasonal extreme for another?

“Because the carbon budget, especially when it comes to carbon dioxide, is highly seasonal,” said Ken Davis, ACT-America prinicpal investigator from Penn State University.

From summer to winter, the exchange of carbon dioxide between the biosphere on land and the atmosphere goes through some big changes.

“The biosphere is growing vigorously in the summer, taking carbon dioxide out of the atmosphere,” said Davis from his office at Penn State. “In the winter, it’s slowly breathing out — not a lot, because it’s cold. But it is slowly exhaling all winter long.”

The transport of greenhouse gases through the atmosphere can be quite different in winter as well. The jet stream plunges deeper south and tends to bring with it more intense storms. Those mid-latitude cyclones cause vigorous mixing of the gases in the atmosphere.

One thing that tends to stay relatively steady from season to season — human carbon emissions from the extraction and burning of fossil fuels.

What makes ACT-America unique is that it marks the first time aircraft outfitted to take advanced measurements of greenhouse gases have collected continuous data on how greenhouse gases are transported through the atmosphere by weather systems.

Previous measurements studying greenhouse gases have mostly come from tower-based measurement stations and satellites (one of ACT-America’s goals is actually to verify data coming in from NASA’s Orbiting Carbon Observatory-2 satellite), or from aircraft flying in fair weather conditions when atmospheric transport is relatively simple.

The campaign will use instruments on a C-130H based out of NASA’s Wallops Flight Facility on Virginia’s Eastern Shore and a King Air B-200 based out of NASA’s Langley Research Center in Hampton, Virginia.

Charles Howell, electronics engineer, makes final adjustments to the electrical system of NASA’s King Air B-200 at Langley Research Center in Hampton, Virginia. Credit: NASA/David C. Bowman

Charles Howell, electronics engineer, makes final adjustments to the electrical system of NASA’s King Air B-200 at Langley Research Center in Hampton, Virginia. Credit: NASA/David C. Bowman

Davis believes the data the ACT-America team is collecting could help paint a much more detailed picture of what’s happening with greenhouse gases in the U.S.

“It’s our vision to enable the research community to monitor over time and space carbon dioxide and methane fluxes,” he said. “For example, if forests in the eastern U.S. become stressed by droughts and begin to de-gas their carbon stocks into the atmosphere, we want be able to detect it from atmospheric data and know quickly that we have a problem. And if measures are taken to reduce methane emissions from agriculture, and oil and gas extraction, we want to be able to verify that they’re proving effective.”

Breaking up the Intensity

Amid the flurry of activity that comes with being in the field, Ken Davis, principal investigator for ACT-America from Penn State, finds moments of calm in running and exploring nature. Credit: NASA/David C. Bowman

Amid the flurry of activity that comes with being in the field, Ken Davis, principal investigator for ACT-America from Penn State, finds moments of calm in running and exploring nature. Credit: NASA/David C. Bowman

That long-term vision motivates Davis as he faces what he refers to as “the intensity of the field deployment.”

To keep the intensity manageable, he finds little ways to decompress. The Penn State professor is an avid runner. Last summer, when he wasn’t on a flight or planning a flight or doing something related to the campaign, it wasn’t unusual to catch Davis in his unofficial uniform: a T-shirt, shorts and running shoes. That’s not likely to change for this flight campaign, regardless of the weather.

“That’s been my thing for a long time,” he said. “Get outside, go for a run.”

Davis also hopes to slow down and enjoy his surroundings — particularly in Virginia.

Last July wasn’t exactly the best time for that. From his temporary home base at Wallops, Davis ventured out to visit nearby Chincoteague National Wildlife Refuge and Assateague Island National Seashore. The area is known for its pristine beaches, herds of wild ponies and migratory bird populations.

Unfortunately, when it’s warm, the area is also known for its hungry mosquitoes.

So Davis hopes the winter season will not only bring changes to concentrations of greenhouse gases, but also to concentrations of blood-sucking insects.

“We went out there in the summer and were eaten alive,” he said. “But I like the place and it should be fun to see it in the winter when we won’t be eaten alive.”

Chasing Greenhouse Gases Where Corn Stands Tall

Posted on by .

by Joe Atkinson / LINCOLN, NEBRASKA /

It’s the morning meeting before the day’s flight on Thursday, Aug. 4. Fingers are clacking away at laptop keyboards. Starburst and Jolly Ranchers are scattered across a long table.

Almost as colorful as the candy are the weather maps projected onto the wall. They show a weather front slicing clean through Nebraska. Storms are likely later in the day. We’ll soon be chasing carbon dioxide and methane around both sides of the front in NASA’s C-130 Hercules research aircraft.

Fields of green are an ever-present sight on the August 4 science flight, which nips down into Missouri before heading back up through Nebraska and into southern South Dakota. Credit: NASA/Joe Atkinson

Fields of green are an ever-present sight on the August 4 science flight, which nips down into Missouri before heading back up through Nebraska and into southern South Dakota. Credit: NASA/Joe Atkinson

Dan Lahrman, an electrical test engineer, pours liquid nitrogen into the Multi-function Laser Lidar before takeoff. Instrument technicians have to keep a detector in the lidar as close to absolute zero as possible. During long flights, that sometimes means waiting for a smooth stretch and refilling the liquid nitrogen in the air. Credit: NASA/Joe Atkinson

Dan Lahrman, an electrical test engineer, pours liquid nitrogen into the Multi-function Laser Lidar before takeoff. Instrument technicians have to keep a detector in the lidar as close to absolute zero as possible. During long flights, that sometimes means waiting for a smooth stretch and refilling the liquid nitrogen in the air. Credit: NASA/Joe Atkinson

The flight is part of the Atmospheric Carbon and Transport–America, or ACT-America, campaign, which is investigating how weather systems and other atmospheric phenomena affect the movement of the two greenhouse gases in the atmosphere.  

Our flight path will take us into the northwest corner of Missouri then back north through Nebraska and into South Dakota.

“We’re going after something that should be dominated by transport,” says Ken Davis, principal investigator for ACT-America from Penn State.

Looking at flight scenarios for upcoming days, ACT-America instrument scientist Josh DiGangi of NASA’s Langley Research Center in Hampton, Virginia, suggests an ambitious path that involves a spiral pattern.

“Oh, that just makes my head hurt,” Davis says.

The C-130 sits on the tarmac before takeoff. Credit: NASA/Joe Atkinson

The C-130 sits on the tarmac before takeoff. Credit: NASA/Joe Atkinson

Pilots Brian Bernth, foreground, and Jeff Callaghan maneuver the C-130 to altitudes from 1,000 to 25,000 feet. Twice during the 5-hour flight, they push the aircraft into long, looping spirals that start high and end with turbulent low-altitude runs. Credit: NASA/Joe Atkinson

Pilots Brian Bernth, foreground, and Jeff Callaghan maneuver the C-130 to altitudes from 1,000 to 25,000 feet. Twice during the 5-hour flight, they push the aircraft into long, looping spirals that start high and end with turbulent low-altitude runs. Credit: NASA/Joe Atkinson

In the minutes before everyone heads out to the aircraft, a reporter from the Lincoln Journal Star calls. He’s hoping to find out what NASA is doing in Lincoln.

It’s a fair question. Amid the hubbub of people prepping for the flight, Davis explains to the reporter that the Midwest is a region ripe with greenhouse gas fluxes, or areas where lots of greenhouse gases are exchanged between the biosphere on land and the atmosphere.

Agriculture is a huge factor. The vast, seemingly endless fields of corn and soybean in the area gobble up a lot of carbon dioxide. Cows and other livestock produce copious amounts of methane. Coal operations in Wyoming, and oil and gas production in the Dakotas contribute to the complex atmospheric chemistry as well.

“It’s the kind of ecosystem we want to understand,” Davis tells the reporter.

Weather plays a factor, too. Big storms churn up the gases and move them around.

“This is where the storms form,” Davis says. “Many mid-latitude cyclones are born on the eastern slope of the Rockies.”

Ken Davis, ACT-America principal investigator, stays glued to his laptop monitoring data through much of the flight, though he occasionally pokes his head up into the cockpit to snap photos. Credit: NASA/Joe Atkinson

Ken Davis, ACT-America principal investigator, stays glued to his laptop monitoring data through much of the flight, though he occasionally pokes his head up into the cockpit to snap photos. Credit: NASA/Joe Atkinson

Rebecca Pauly of NASA's Goddard Space Flight Center preps the Cloud Physics Lidar before takeoff. Credit: NASA/Joe Atkinso

Rebecca Pauly of NASA’s Goddard Space Flight Center preps the Cloud Physics Lidar before takeoff. Credit: NASA/Joe Atkinso

Josh DiGangi, ACT-America instrument scientist from NASA Langley, monitors in situ greenhouse gas measurements in real time during the flight. Credit: NASA/Joe Atkinson

Josh DiGangi, ACT-America instrument scientist from NASA Langley, monitors in situ greenhouse gas measurements in real time during the flight. Credit: NASA/Joe Atkinson

On the C-130, not long after takeoff, Davis climbs the stairs into the cockpit.

“After we get to the end of this,” he says, gesturing out at the clouds, “we’re going to spiral down, turn around and fly at about 1,000 feet.” He moves his hands up and down to simulate turbulence. “That’s usually pretty fun.”

And it is. The first time. Another bouncy low-altitude run later in the flight puts my inner ear to the test.

Other than that, though, it’s a relatively smooth, comfortable ride — even with a fair number of altitude changes. Those changes are important. They allow the science instruments to gather data in different layers of the atmosphere.

Also, as Josh DiGangi puts it: “Remote sensing instruments like to be up high; in situ instruments like to be down low.”

In fact, the remote sensing lidar instruments can be dangerous at lower altitudes. A zap from one of the lasers could do real damage to the eyes of someone looking up through a pair of binoculars. That’s why lidar instruments have to be turned off at altitudes below 6,000 feet.

As he watches real-time data from his in situ instruments scroll across a computer monitor, DiGangi occasionally reaches into a nearby storage bin and pulls out handfuls of pretzels or cheddar popcorn. He offers to share.

“But don’t eat my banana,” he says. “That’s my banana.”

He’s joking. Sort of. But snacks and drinks are relatively easy to come by on the aircraft, anyway. There’s a microwave, a little refrigerator and even a coffee maker.

Little amenities like a coffeemaker make long flights more bearable. Credit: NASA/Joe Atkinson

After five mostly nausea-free hours in the air, the C-130 lands back in Lincoln.

“[Lincoln’s] not as exciting as traveling to some exotic part of the world,” Davis joked to the newspaper reporter that morning.

He’s right. It’s not exotic. But following a vicious thunderstorm that rips through Lincoln a couple of hours after the flight touches down, a vivid double rainbow arcs over the airport. It’s visible from end to end. Yeah, it’s not tropical beaches and palm trees, but it’s a beautiful sight nonetheless.

One of the main reasons for ACT-America coming to Lincoln is agriculture. The vast cornfields are major carbon sinks, and there's no escaping them, not even at the airport. Credit: NASA/Joe Atkinson

One of the main reasons for ACT-America coming to Lincoln is agriculture. The vast cornfields are major carbon sinks, and there’s no escaping them, not even at the airport. Credit: NASA/Joe Atkinson

 

 

From the Cockpit: Q&A with NASA Science Pilots

Posted on by .

by Sam McDonald / HAMPTON, VA. /

Flying airborne science missions requires skill, patience and adaptability.

The C-130H pilots flying now over the eastern United States measuring carbon dioxide and methane for NASA’s ACT-America field campaign are asked to fly precise routes, giving scientists an opportunity to gather very specific sets of data on sources, absorption and movement of these gases.

In the skies over Maryland on July 22, pilot Jim Lawson takes in the view during an ACT-America flight to measure atmospheric gases. Credit: NASA/Sam McDonald

Readings taken by instruments aboard the aircraft will be compared to those collected on the ground, aboard a second ACT-America aircraft, and from a satellite on orbit. Making apples-to-apples comparisons means following exact flight profiles while shepherding the airplane through weather that’s not always sunny and mild.

Pilot Jim Lawson draws on 28 years of flying as a Navy pilot and a civilian flight instructor, putting in more than 10,000 hours at the controls of 11 different types of aircraft. Last year, he flew more than 30 times for NASA’s Operation IceBridge.

Jeff Callaghan has made the C-130 his specialty. He’s been piloting that type of aircraft since getting his wings as a Marine in 1995. He has accumulated more than 3,000 hours in the C-130. In May, Callaghan flew as part of NASA’s North Atlantic Aerosols and Marine Ecosystems Study.

Penn State’s Ken Davis (left), principal investigator for ACT-America, collaborates with C-130H pilots Jeff Callaghan (center) and Jim Lawson during a pre-flight huddle at NASA’s Wallops Flight Facility. Credit: NASA/Sam McDonald

We asked Lawson and Callaghan questions about what it’s like to fly American skies in the name of science and in support of ACT-America.

What do you find the most difficult or rewarding about flying for ACT-America? 

Jim Lawson: Flying for science is very challenging and interesting. We are challenged as pilots when flying NASA mission profiles and get to use the full extent of our pilot skills. The reward is knowing that the work I do benefits the advancement of science and humanity.

Flying weather-dependent missions requires flexibility. When you find you can’t fly because of adverse conditions, how do you spend your time?

JL: While on the ground, the pilots are assisting the science team in the planning of the next missions. If one flight mission cancels for any reason, we look for ways to incorporate that mission into future mission profiles. Adaptability and flexibility are key!

You previously flew for the Navy and are currently in the Naval reserves.  Was it hard to make the transition to NASA missions?

JL: All of the aircrew have prior military service. We have Navy, Marines and Air Force represented on the crew. The culture and work ethic are the same and we all work well together to get the mission done. The only difference is the mission and the customer. Unlike the military, where our mission would be to support combat operations and where the customer is the Department of Defense, the mission for us now is the NASA science objectives and our customer is our NASA science team.

Communication is key to achieve the NASA mission objectives, and this can be a challenge sometimes, but since we are all professionals, we learn to speak each other’s language. The aircrew become wise in the ways of science and the scientists learn the ways of aviation.

What do you like most about being a pilot?

JL: My office always has the best view.

F JimC130Closer_9539-2

At NASA’s Wallops Flight Facility, pilot Jim Lawson in front of the C-130H. Credit: NASA/Sam McDonald

Does flying along weather fronts present any unusual challenges?

Jeff Callaghan: Having flown the C-130 for so many years in all kinds of weather conditions, I would say that the only unusual thing would be trying to figure out where the front is, but that is why the science team comes up with our flight paths. 

Do you feel like, as a pilot on this mission, you are playing a part in helping mankind better understand the planet?

JC: In some small way, yes. A lot of people can do what I do, but there are not nearly as many people who can do what the science team does.

What do you enjoy most about being a pilot?

JC: It is hard to describe. I just love flying. I especially love flying the C-130 and working closely with my crew.

Pilot Jeff Callaghan at NASA’s Wallops Flight Facility. Credit: NASA/Sam McDonald

Pilot Jeff Callaghan at NASA’s Wallops Flight Facility. Credit: NASA/Sam McDonald

 

 

A Sweet Pause After Chasing Airborne Carbon

Posted on by .

by Sam McDonald / WALLOPS ISLAND, VA. /

Gathering data on atmospheric carbon dioxide and methane in the skies over the U.S. East Coast can be intense.

ACT-America researchers running instruments such as the Multi-functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) are generally all business as they monitor their expensive technologies built to measure greenhouse gases.

Penn State meteorology professor Ken Davis views conditions from the cockpit of the C-130H during the ACT-America flight on July 22. Credit: NASA/Sam McDonald

Penn State meteorology professor Ken Davis views conditions from the cockpit of the C-130H during the ACT-America flight on July 22. Credit: NASA/Sam McDonald

Aboard the C-130H, Nathan Blume (standing) and Jeremy Dobler monitor data from an instrument that uses laser light to measure atmospheric carbon dioxide. Credit: NASA/Sam McDonald

Aboard the C-130H, Nathan Blume (standing) and Jeremy Dobler monitor data from an instrument that uses laser light to measure atmospheric carbon dioxide. Credit: NASA/Sam McDonald

They stare intently at computer readouts telling them how instruments are functioning. They note subtle changes as their machines gather readings that will help show where carbon dioxide and methane come from and how those gases move through the air.

It’s serious work, but that doesn’t mean researchers can’t take a moment to savor the day’s accomplishments.

As soon as pilot Jim Lawson turned the C-130H homeward on July 22 after some four hours of methodical zigzagging above Maryland, Virginia, West Virginia and Pennsylvania, Yonghoon Choi decided it was time for a break.

Choi, who was in charge of the flight’s in situ (meaning “in place”) measurements, reached into a bin beside a tall rack of readouts and electronics and pulled out something tasty.

He produced a plastic bag laden with chocolate morsels, fruit chews and hard candy. Then, he hopped up from his seat and walked through the hold of the C-130H, offering his teammates something sweet.

CandyTime_9536 F

Yonghoon Choi from NASA’s Langley Research Center prepares to share treats with his fellow researchers during the July 22 ACT-America science flight. Credit: NASA/Sam McDonald

“It’s our tradition,” Choi said, based at NASA’s Langley Research Center in Virginia. “When we’re going home, we eat candy.”

Choi is a veteran of more than a dozen airborne science campaigns like ACT-America. He’s been taking in situ measurements for some 15 years and has flown on aircraft including the DC-8, DC-12, the P-3, the Falcon and the P-20.

He explained that it’s not unusual for science flights to stretch to 8-10 hours. “After that long, everybody’s tired and ready for a treat,” Choi said, smiling.

On this flight, the ACT-America team encountered mostly clear summertime weather as they flew alternating legs at 1,000 and 10,000 feet. But there were moments of bumping and bouncing. Choi and ACT-America Principal Investigator Ken Davis stayed in close contact as the C-130H crossed in and out of what atmospheric scientists call the boundary layer.

C130interior_9504 F

The cargo bay of the C-130H outfitted with instruments that measure atmospheric gases both directly and remotely using lasers. Credit: NASA/Sam McDonald

“That was complicated today,” Davis said to Choi as the aircraft flew back toward its home base at NASA’s Wallops Flight Facility in Maryland. There was convection in the lower atmosphere and fluctuations in the boundary layer, the region of the lower troposphere where proximity to Earth’s surface creates turbulent air.

An irregular boundary layer can make measurements more difficult to parse.

“The data collection was fine, everything was working,” said Davis, a professor at Penn State University. “What we collected represents a relatively complicated state of the atmosphere.” Sources and sinks of greenhouse gasses are in action along with forces that transport them through the air.

“It’s challenging to interpret, but it doesn’t mean it can’t be interpreted,” Davis said. “The world is complicated some days.”

 

Collecting Fingerprints in the Sky

Posted on by .

by Denise Lineberry / HAMPTON, VA. /

This NASA airborne science experiment that started flights over the eastern United States this month resembles a classic case of “who done it?” ACT-America, the Atmospheric Carbon and Transport – America expedition, is studying the movement of two powerful greenhouse gases — carbon dioxide and methane.

It was hot and humid in the Mid-Atlantic region as the first set of science flights began in mid-July. The scene on July 18 was the hangar at NASA’s Langley Research Center in Hampton, Va. The lineup of potential suspects included gases from plants, fossil fuels, air conditioning units and electrical transformers.

Technician Jim Plant gets the ACT-America science instruments ready onboard NASA’s B-200 aircraft.

Inlets built into several sensors on the belly of NASA’s B-200 aircraft take in samples of the air and atmospheric gas with the push of a button once the flight was underway. The sensors are strategically placed to not take in any exhaust from the aircraft.

Inlets on the belly of the NASA B-200 collect samples of carbon and methane during flight.

For ACT-America’s first B-200 science flight, Colm Sweeney from the National Oceanic and Atmospheric Administration (NOAA) at Colorado State University watched from the hangar as the B-200 prepared for takeoff with NOAA’s flask package onboard. Air samples that fill the flasks are atmospheric fingerprints that provide clues about where individual chemical compounds came from.

“Plants take up lighter carbon, and emitted carbon has a different ratio,” Sweeney explained.

Gases have certain tracers, such as SF6 used in electrical transformers, and those tracers stay with them as they rise into the atmosphere as a plume.

“We’re basically getting a fingerprint on where the plumes are coming from,” Sweeney said.

Jim Plant was the lone instrument operator aboard the aircraft, accompanied by science instruments, a pilot and co-pilot to minimize the weight on board for a longer duration flight. The B-200 met up in a predetermined area or “box” along with the larger, more instrumented NASA C-130 aircraft that took off from NASA’s Wallops Flight Facility along the Virginia coast.

The B-200 meets up with the C-130 aircraft in coordinated flights over the Mid-Atlantic region this month.

The B-200 made lawnmower patterns inside the box and circled down through layers of the Mid-Atlantic atmosphere to study how carbon dioxide and methane cycle into and out of the atmosphere.

“We want to better understand what’s going on inside the box to later extrapolate what’s going on outside of the box,” said Byron Meadows, ACT-America’s aircraft instrument manager.

With the push of a button onboard, a sample of air and gas fills the flask package, which is closed off from outside exposure. Once the dozen flasks are filled, the monitor reads, “Have a nice day.”

ACT-America team members discuss final preparations before the start of the Mid-Atlantic portion of the month-long flight campaign.

After the flights, the samples are sent back to a lab at Colorado State University where they are analyzed. The final step, according to Sweeney, is to model the samples to determine if carbon and methane emissions are increasing or decreasing.

“If we plan to curb emissions, we have to be able to check the accuracy of them and inform the proper policies needed to make a difference,” Sweeney said.

In addition to the flask system that collects samples from the air, several other instruments are integrated into the B-200 to study carbon and methane. Several ground measurement sites complement and fill in gaps between the study regions

This case is far from closed. In August ACT-America continues its sky sleuthing over two other parts of the eastern U.S. with flights from Lincoln, Nebraska, and Shreveport, Louisiana. With each passing flight, the data collected provides scientists with new clues that will help improve diagnoses of the global carbon cycle for decades to come.

 

 

Ten Things You Should Know about ACT-America

Posted on by .
C130 Hercules from Wallops Flight Facility is being used with Atmosphereic Carbon and Transport-America which is a muiliti-year airborne campaign that will measure concentrations of two powerful greehouse gases-- carbon dioxide and methane in relation to weather systems in the eastern United States.

The C-130 Hercules from Wallops Flight Facility is being used for Atmosphereic Carbon and Transport-America, a muilti-year airborne campaign that will measure concentrations of two powerful greehouse gases, carbon dioxide and methane, in relation to weather systems in the eastern United States.

by Mark Kaufman and MaryAnn Jackson / Hampton, Va. /

Atmospheric Carbon and Transport – America, or ACT-America, kicked off July 18. Here are ten things we think you should know about this aiborne field campaign:

  1. The ACT-America study will last 5 years. Each airborne campaign will last six weeks and fly during every season: fall, winter, spring and twice during the summer over the eastern United States.
  2. Other than studying the transport, sources and sinks of carbon dioxide, ACT-America seeks to better understand the sources of methane release into the atmosphere. Methane is an especially potent greenhouse gas—“pound for pound,” a methane emission has 25 times the warming effect of carbon dioxide. (Source: https://www3.epa.gov/climatechange/ghgemissions/gases/ch4.html)
  3. In the United States, the Environmental Protection Agency estimates that the digestive processes of domestic livestock, like cattle and sheep, produce 22 percent of the country’s methane emissions. Globally, however, these animals are believed to be the primary contributors to methane emissions.
  4. Both ACT-America planes, the C-130 and B-200, are fitted with instruments that actively take in bits of the atmosphere as they fly over the rural and urban areas of the United States.
  5. The larger of the two ACT-America planes, the C-130, can stay aloft in eastern American skies for up to 8 hours, cutting “lawnmower” patterns through the atmosphere.
  6. During the growing season, forests serve as effective carbon sinks, taking carbon dioxide from the air and turning it into leaves and other plant matter. During winter, however, when leaves drop and plants decay, these same forests become sources. But are these forests net sinks or net sources of carbon dioxide? ACT-America intends to find out.
  7. At times, the C-130 aircraft will fly underneath, or “under-fly,” a NASA satellite called the Orbiting Carbon Observatory – 2 (OCO-2). Like ACT-America, OCO-2 measures the carbon dioxide in the atmosphere in order to characterize its sources and sinks. ACT-America’s measurements will help to evaluate the accuracy of the satellite’s observations.
  8. Terrestrial ecosystems, like farms and forests, remove one-fourth of anthropogenic carbon dioxide emissions from the atmosphere. ACT-America wants to better understand where this is happening and how these sinks might evolve in the future.
  9. ACT-America is flying over the eastern United States—regions east of the Rockies—because they provide ideal environments to study the transport, release and absorption of carbon: lively and dynamic weather systems, abundant forests and farms, cities, and productive industries.
  10. Understanding how weather moves carbon around the atmosphere will benefit our understanding of an uncertain climatic future. In five years, says Principal Investigator Ken Davis, “we should be able to better manage and predict the future climate.”