Tag Archives: IceBridge

Flying with Friends: Operation IceBridge’s Collaboration with ESA

Posted on by .
An image of ESA’s Twin Otter passing underneath the P-3, captured by Operation IceBridge’s high-resolution camera. Credit: NASA/Dennis Gearhart

An image of the European Space Agency’s (ESA) Twin Otter passing underneath the P-3, captured by Operation IceBridge’s high-resolution camera. Credit: NASA/Dennis Gearhart

by Maria-Jose Viñas / THULE, GREENLAND /

Do you remember that dreaded math problem in high school, the one where two trains left different stations traveling at different speeds toward each other and you had to calculate when and where they would meet? Now try solving a variation of this problem where the two trains are substituted with three very different aircraft—two leaving from the Canadian Arctic, one from northwestern Greenland—plus a satellite flying overhead. This was the logistical puzzle that Operation IceBridge, NASA’s airborne survey of changing polar ice, had to crack on Friday, March 24, during its ninth Arctic campaign.

The original plan had involved four planes: IceBridge’s P-3, the G-III from NASA’s Oceans Melting Greenland (OMG) campaign and two aircraft from the European Space Agency (ESA)—a Twin Otter and a Basler dubbed Polar 5, both carrying laser scanners and radars, among other instruments. The goal was for all of the planes to fly the same path over sea ice, right beneath one of ESA’s CryoSat-2 satellite tracks, while simultaneously collecting measurements so that scientists could later compare the data gathered by the different instruments on the three planes and the spacecraft’s radar altimeter.

Operation IceBridge’s P-3 at Thule Air Base. Credit: NASA/Maria-Jose Viñas

Operation IceBridge’s P-3 at Thule Air Base. Credit: NASA/Maria-Jose Viñas

“The primary reason for the whole exercise was to cross-calibrate the CryoSat-2 radar with all of our radars and lasers,” said John Sonntag, IceBridge mission scientist. “This will allow us all to better understand the performance of our instruments and how well we perform our surveys”.

Early in the morning of Thursday, March 24, IceBridge’s P-3 and OMG’s G-III took off from Thule Air Base in northwest Greenland and headed to the Lincoln Sea, north of Canada. They were planning to rendezvous there with the two ESA planes, which were based in Alert Station, a Canadian base in Ellesmere Island, in the Canadian Arctic. Since the Twin Otter and Polar 5 were located closer to the target site, the Europeans would depart Alert four hours after the NASA planes had left Thule. But before they could take off, an unexpected fog bank rolled over Alert, shutting the airport down.

Still, IceBridge and OMG proceeded with their flight, sampling the thick multi-year ice near the Ellesmere coast and the gradient to thinner ice closer to the North Pole with their instruments: OMG’s radar mapper and IceBridge’s suite of instruments, encompassing a scanning laser altimeter that measures ice surface elevation, three types of radar systems to study ice layers and the bedrock underneath the ice sheet, a high-resolution camera to create color maps of polar ice, and infrared cameras to measure surface temperatures of sea and land ice.

The following day, the IceBridge team decided to give it another go but OMG had already exhausted its allotted flight hours and had to stay on the ground. To increase their confidence that their European collaborators would be able to fly that day, the P-3 took off one and a half hours later than it normally would have. This time, it was a success: the three aircraft flew over the CryoSat-2 track line (one a few dozen miles east of the one IceBridge and OMG had flown the day before) within 42 minutes of each other. The satellite overflew the same line just two minutes after IceBridge had completed it.

View from the P-3’s cockpit of the encounter with the Polar 5 and Twin Otter planes. Credit: NASA/Jeremy Harbeck

View from the P-3’s cockpit of the encounter with the Polar 5 and Twin Otter planes. Credit: NASA/Jeremy Harbeck

“Ideally, all three aircraft and the satellite would be over the same point at exactly the same time, but that’s almost impossible to do with three airplanes operating at different speeds and altitudes,” Sonntag said. “Still, we had some flexibility because the sea ice moves slowly—as long as we all flew over it within two hours, we could be sure we were all measuring the same ice.”

It will take scientists from the different teams about six months to process all the measurements before they’re able to compare them, but NASA and ESA are already calling the collaboration a success.

“This collaboration took a lot of careful coordination,” Sonntag said. “It demonstrates the commitment of ESA and NASA to work cooperatively to better understand the cryosphere.”

NASA IceBridge: Fit to Fly

Posted on by .
The Mountains of Alexander Island as seen from the NASA DC-8 on October 15, 2016.  The curious feature near the floor of the valley at center may be a small patch of fog, or it may be an avalanche in progress. Credit: NASA/John Sonntag

The Mountains of Alexander Island as seen from the NASA DC-8 on October 15, 2016. The curious feature near the floor of the valley at center may be a small patch of fog, or it may be an avalanche in progress. Credit: NASA/John Sonntag

by Emily Schaller / PUNTA ARENAS, CHILE /

Imagine a 12-hour flight that takes off and lands in exactly the same place. Now imagine willingly boarding that flight six days per week. This is the routine that NASA’s Operation IceBridge team in Punta Arenas, Chile, follows for six weeks every fall in order to collect data on Antarctica’s changing ice sheets, glaciers and sea ice. Operation IceBridge’s mission is to collect data on changing polar land and sea ice and maintain continuity of measurements between ICESat missions. The original ICESat mission ended in 2009, and its successor, ICESat-2, is scheduled for launch in 2018.

Our DC-8 flying laboratory can’t land on the icy surface of Antarctica, so instead we base our operations as close as we can get—near the southern tip of Chile. The schedule is grueling but incredibly important for maintaining a yearly record of Antarctica’s changing ice.

What is it like inside the airplane every day for those 12-hour flights?

There are generally about 25 of us aboard, including pilots and crew and a team of scientists and engineers who operate a variety of instruments measuring the thickness and extent of ice sheets.

Operation IceBridge's DC-8 flight track from October 14, 2016, showing the position of the aircraft (green icon) over Antarctica about half way through the 11-hour science flight.  The DC-8 takes off and lands at Punta Arenas, Chile.

Operation IceBridge’s DC-8 flight track from October 14, 2016, showing the position of the aircraft (green icon) over Antarctica about half way through the 11-hour science flight. The DC-8 takes off and lands at Punta Arenas, Chile. Credit: NASA

Much of the roughly 12-hour flight is spent flying to and from Antarctica, with the meat of the science in the middle hours of the flight (between 3-9 hours after takeoff, if our mapping target of the day is near the Antarctic coast, or between 4-8 hours after takeoff if our mapping target is closer to the pole).  Most of the instruments do not collect data until we get to Antarctica, so this leaves hours of downtime at the beginning and end of each flight for many of the people aboard (except for the pilots and navigators, of course!).  We often fill this time with outreach and educational activities, as our airplane’s satellite data system allows us to live chat with classrooms back in the United States and all over the world.  Over the past 4 years, nearly 5,000 students in K-12 classrooms across the US and in Canada, Mexico and Chile have connected directly with our IceBridge teams in-flight.

In order to keep ourselves in shape and build team morale, an informal airborne Antarctic workout club has formed to help pass the time during our long flights. Originally inspired by a Navy tradition of dropping and doing 25 pushups on the hour, every hour, our DC-8 version of this tradition persists on many missions due to the encouragement of DC-8 Navigator Walter Klein, Operations Engineer Matt Berry and by IceBridge Project Manager John Woods.

Pushups_DC8_Antarctica

On October 15, 2016, while flying over Antarctica on the NASA DC-8, members of the Workout Club Above Antarctica get moving. Left: John Woods and Walter Klein. Right: Emily Schaller and Walter Klein. Credit: NASA/Emily Schaller

On recent IceBridge flights, in addition to (or in place of) pushups (depending on the person), the on-the-hour exercise also includes squats, stretching, yoga and ballet.

 IceBridge instrument scientist, Eric Fraim, aboard the DC-8 during an hourly exercise break, practices a Barre3-inspired pose above Antarctica. Credit: NASA/Emily Schaller


IceBridge instrument scientist, Eric Fraim, aboard the DC-8 during an hourly exercise break, practices a Barre3-inspired pose above Antarctica. Credit: NASA/Emily Schaller

While not everyone gets up every hour due to their various duties, there are usually a few people nearly every hour doing activities to keep the blood flowing and their minds and bodies engaged during the long daily flights over Antarctica.

NASA IceBridge Antarctica: We are fit to fly!

Exploring Barrow with Operation IceBridge

Posted on by .

 

Taking off from the Wiley Post-Will Rogers Memorial Airport provides a view of Barrow and the neighboring Chukchi Sea, at 71° N latitude. Credit: NASA/Kate Ramsayer

Taking off from the Wiley Post-Will Rogers Memorial Airport provides a view of Barrow and the neighboring Chukchi Sea, at 71° N latitude. Credit: NASA/Kate Ramsayer

by Kate Ramsayer / BARROW, ALASKA /

A cloudy day in the middle of Operation IceBridge’s summer campaign in Barrow, Alaska, meant no flights that day, so instead several members of the campaign showed local kids how to build and fly NASA-quality paper airplanes.

“This is what an engineer does, see what works and what doesn’t,” pilot Rick Yasky told one elementary-age summer camper.

Children learning how to make paper planes

Pilot Taylor Thorson, of NASA’s Langley Research Center in Virginia, shows Barrow kids how to design different kinds of paper airplanes. “There’s no right or wrong way to do it, we’ll just try to make it fly” he said. Credit: NASA/Kate Ramsayer

The campaign, which measured melting sea ice in the Arctic, was the first IceBridge mission out of Barrow, so while in town the 11 scientists, pilots and flight crew explored the local science, culture and community.

One of the flight crew was walking along the beach when he came across fishermen pulling in a line of salmon—he helped, and walked back to the hotel with enough fish to eat for the rest of the campaign. Another chatted with local women who were removing reindeer tendons, which would dry out until the fall when the women would braid them together to use in sewing.

And in the middle of the campaign, they helped at a summer camp by making birdhouses, holding a paper airplane contest and showing the campers the NASA Falcon jet out of Langley Research Center in Virginia.

John Woods, Operation IceBridge project manager with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, explains the rules of a paper airplane contest to day campers at a Barrow summer program. There were two categories – farthest distance, and longest aloft. Credit: NASA/Kate Ramsayer

John Woods, Operation IceBridge project manager with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, explains the rules of a paper airplane contest to day campers at a Barrow summer program. There were two categories: farthest distance and longest aloft. Credit: NASA/Kate Ramsayer

Barrow day campers check out NASA’s Falcon jet, which IceBridge flew for its summer sea ice campaign. Credit: NASA/Kate Ramsayer

“When anyone comes up, we like to have them visit with the kids,” said Chris Battle, Barrow recreation director and deputy mayor. “We’re isolated so it’s good to let them have exposure to these things.”

John Woods, IceBridge project manager, also gave a library talk on how NASA measures sea ice and Arctic health, speaking to whaling captains, scientists, locals and three kids in astronaut suits. Woods and others also talked with local researchers working on the tundra with carbon monitoring stations, weather instruments and more.

Man walking in Barrow.

Karl Newyear, chief scientist with the Ukpeagvik Inupiat Corporation in Barrow, leads a tour of the Barrow Environmental Observatory, where researchers come to study the tundra. Credit: NASA/Kate Ramsayer

This is the first time that IceBridge has been based in Barrow—the farthest north town in the United States. And the mission hopes to use it as a base to fly out again, Woods said.

“It’s an ideal location, between the Beaufort and Chukchi seas,” he said, referring to two of IceBridge’s research destinations. “We couldn’t have gotten better support from the City of Barrow and the local community. They’ve been terrific, and we’d love to see our relationship with them grow.”

Going with the Floe: Measuring Summer Arctic Sea Ice

Posted on by .
Sea ice from an airplane

From 1500 feet above the Chukchi Sea, Operation Icebridge sees melt ponds, ridges and other topography on ice floes. Credit: NASA/Kate Ramsayer

by Kate Ramsayer / BARROW, ALASKA /

In July the Chukchi Sea, 300 miles north of Barrow, Alaska, is as varied as any land terrain.

Sheets of floating ice called floes are cracked into pieces like pottery shards and are dotted with ponds of melted snow. The deepest blue ponds, whose dark colors signify melting that’s occurring in thicker ice, connect to neighbors with winding black rivers that empty into the open sea. Giant chunks of ice form rough ridges where ocean currents and winds have slammed the ice floes into each other.

It’s summertime in the Arctic, and the ice is in flux.

“I’ve flown in the spring lots of times, and then the Arctic ice cover is just a flat expanse, it just goes out forever,” said Nathan Kurtz, Operation IceBridge project scientist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Now, in the summer, it’s just so variable. You see places where the floes are a lot more broken up, you see a mixture of places where the snow has melted and you see bare ice, and various depths of melt ponds … you see these patches all over of ice in different stages of melt.”

Melt ponds in the summer could be an indicator of how this year’s Arctic sea ice extent will be at the September minimum.

Melt ponds in the summer could be an indicator of this year’s Arctic sea ice extent at the September minimum. Credit: NASA/Kate Ramsayer

Operation IceBridge made two flights out of Barrow on Tuesday, July 19, as part of the campaign’s first effort to take airborne measurements of melting summer sea ice. Flying 1,500 feet above the ice floes were three instruments: a laser altimeter that measures the heights of the water, snow and ice; an infrared imager that provides temperature readings to help differentiate between water and ice; and a downward-facing mapping camera.

“We’ve never mapped melt ponds so extensively like this,” Kurtz said. And there were many melt ponds to map, as stretches of open water dotted with ice alternated with stretches of ice dotted with ponds and open water.

On the first flight, fog in Barrow and cloudy skies for the first couple hundred miles cleared up just as the agency’s Falcon jet, out of NASA’s Langley Research Center, reached the line the scientists wanted to measure. The goal? Take readings along the path that the European Space Agency’s CryoSat-2 would fly over shortly after 3 pm, local time. That would provide ways to compare the satellite and airborne data and see if scientists could use the summer satellite data.

Instruments on NASA’s Falcon jet monitor the sea ice in the Chukchi Sea below.

Instruments on NASA’s Falcon jet monitor the sea ice in the Chukchi Sea below. Credit: NASA/Kate Ramsayer

Then, early Tuesday evening, the team took off on another flight to the northeast. This flight was designed to see the patterns and topography of sea ice in the Beaufort Sea along a path dubbed the Linkswiler line, after Matt Linkswiler, operator of the laser altimeter.

Kurtz and his colleagues are investigating whether a combination of measurements can help estimate sea ice thickness. It’s a tricky piece of information to get, but one that could provide clues to how fast the summer ice will melt, or whether it could stick around for another year.

They’re studying how well the laser altimeter can measure the depths of the melt ponds—another possible indication of the year’s overall melt season. It’s one of several ways the IceBridge campaign is preparing for the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, scheduled to launch by 2018. How IceBridge can measure summer ice melt could help ICESat-2 scientists develop programs to analyze the satellite’s summer data.

Sea ice melts off the beach of Barrow, Alaska, where Operation IceBridge is based for its Summer 2016 campaign. Credit: NASA/Kate Ramsayer

Sea ice melts off the beach of Barrow, Alaska, where Operation IceBridge is based for its Summer 2016 campaign. Credit: NASA/Kate Ramsayer

For Kurtz, the sheer variety of the summer ice is surprising and was especially noticeable on the Tuesday afternoon flight. Different shades of white gave hints to whether it was just ice or snow on top of the ice, while in some areas the ice was brown, possibly due to embedded algae, Kurtz noted.

After Tuesday’s two flights, Icebridge had completed five of its six planned flights for the Barrow summer campaign. With its clear skies, Tuesday afternoon’s expedition was the best yet.

“That was an excellent flight,” Kurtz said over the plane’s intercom system. “I don’t think we lost anything to clouds.”