Communicating 'Wondrous' Research Efforts

 

From: Jill Hummels, Public Information Officer, University of Kansas School of Engineering

In August, my boss sent me an email with the subject line of “FYI.” I know what he really meant to type was “Great Opportunity.” In the email he asked if I would be willing to travel to the southern tip of Chile to report on the activities of a University of Kansas research team.

My response: “I carry my passport with me at all times … Yes.”

As a public information officer for the KU School of Engineering, I work with people who do truly wondrous things that few others outside the school or the field know much about. My job is to ensure more people know the wondrous, seemingly magical, research efforts of our faculty.

This time I’m following the adventures of KU researchers who’ve developed radars and computer models that can tell the world a lot about what’s happening to our polar ice. Not a bad gig. The KU team, housed at the Center for Remote Sensing of Ice Sheets and led by Professor Chris Allen, was selected by NASA to provide much of the instrumentation for Operation Ice Bridge. Also, not a bad gig.

I’ve traveled to most states and visited many Canadian provinces and a few Mexican states, but this is my first trip outside North America. I’m pretty excited about the opportunity to travel to Punta Arenas, so much so that a 29-hour flight itinerary seems like a pretty cool endurance test. I guess it’s good that I like to fly. That finely honed skill will come in handy if I’m able to sit in on a flight over Antarctica in NASA’s DC-8.

My family is pretty pumped about my Chile excursion, too, although we haven’t broken the news to the dog, yet. We think she might be jealous.

 

Thinking on Your Feet on the Ice

 

From: Nick Frearson, Gravimeter Instrument Team, Lamont-Doherty Earth Observatory

 

Hi there! I’m senior engineer at Columbia University’s Lamont Doherty Earth Observatory in New York, and my role in Operation Ice Bridge is to work with the gravimeter. This instrument can see beneath ice sheets into the water and bedrock below to reveal the hidden shape of this part of the ice sheet – critical information for predicting how ice sheets will change as the climate warms.

 

I see the importance of the poles as an indicator of change. There you can see how sensitive the environment is and how easy it is to upset its delicate balance. Changes to the ice sheets at the poles will change sea levels and climate around the world.

 

I have traveled to both poles and like the wildlife, solitude and shear expansiveness of these amazing places that remind me constantly of how fragile life is. I enjoy thinking on my feet and solving problems with limited resources — so different from our normal civilized lives.

 

On my last trip to Antarctica, we mapped a huge and remote ice-covered mountain range in the middle of the continent, trying to understand how and when the ice sheets formed. Inside my tent I could hear the constant whispering of the wind over the snow, mixed with the music of Radiohead, Coldplay, Snow Patrol, Imogen Heap, among many others.

 

I miss my friends when I’m away. Two summers ago, I went to Canada’s Ellesmere Island with my good colleague, Michael Studinger, to test gravity instruments near the North Pole. The island is stunning with windswept hillsides leading down to frozen fjords. I walked for miles across the island, observing Musk Ox and wolves go about their lives. Back at camp, I enjoyed listening to other scientists talk about their travels.

 

I hope that you enjoy reading about our exploits flying over Antarctica as much as I’ll enjoy taking part in them.

 

 

Nick Frearson from the Lamont-Doherty Earth Observatory

“at home in his snow hole near Mount Erebus,

Antarctica, Christmas 2008.”

 

A New Way to Experience Antarctica


 

From: Michael Studinger, Instrument Co-Principal Investigator, Lamont-Doherty Earth Observatory 

 

The scale and style of Operation Ice Bridge will be a new experience for me. I’ve been involved in airborne research for more than a decade using ice-penetrating radar systems, airborne laser scanning, gravity and magnetics to learn more about the polar ice caps and how they behave.

 

In previous airborne campaigns we have used small instrumented Twin Otter aircraft and operated out of remote field camps deep in the interior of Antarctica and at high elevations and extreme temperatures. This means living and working in tents for months at temperatures around -20 to -40°F and flying in unpressurized aircraft at high altitude. There are no showers and only limited communications with the outside world in these remote field camps.

 

The Ice Bridge campaign will be very different from that. We’ll be flying non-stop roundtrips on the large NASA DC-8 from Punta Arenas, Chile. It feels a bit strange to be flying over Antarctica without actually setting foot on the continent and experiencing firsthand the icy cold and breathtaking beauty of the polar landscape. During Ice Bridge we will have to enjoy the fascination of the polar environment from a heated and pressurized aircraft cabin.

 

I am a research scientist at Columbia University’s Lamont-Doherty Earth Observatory in New York. My background is airborne geophysics which I use to study the ice caps and the Earth’s crust in polar regions. For Ice Bridge, I’ll be involved in measuring the Earth’s gravity field to estimate how deep the water is beneath floating glaciers along the Antarctic Peninsula.

 

I’m looking forward to a relaxed airborne campaign, where you leave from Punta Arenas in the morning and return to civilization in the evening.

 

The Road to Antarctic Science

 

Welcome to the Operation Ice Bridge blog.

 

This new NASA mission is the largest airborne survey of polar ice ever flown.  It is also the most sophisticated, using the latest scientific instruments to give an unprecedented three-dimensional view of the ice sheets, floating ice shelves, and sea ice of both the Arctic and Antarctic.

 

In this blog you’ll hear from a wide range of people involved in Ice Bridge as the mission begins its new expedition: flying over western Antarctica in NASA’s DC-8 starting in October. The base of operations is Punta Arenas, Chile, at the very southern end of South America.

 

– Steve Cole, NASA Office of Public Affairs, Washington, D.C.

 

 

From: Seelye Martin, Chief Scientist, Operation Ice Bridge

 

 

Seelye Martin, University of Washington, in Thule, Greenland this May. Mt. Dundas is in the background. Credit: Sinead Farell

 

I first got involved in polar studies in 1970, when I was hired as an assistant professor at the University of Washington in Seattle. At the university, I did a variety of cold room experiments on sea ice, then took part in a large number of sea ice studies in the Beaufort and Chukchi Seas using land-based helicopters.

 

Later, working from the NOAA ship Surveyor and Coast Guard icebreaker Westwind, I participated in several cruises studying the sea ice of the Bering Sea, serving as chief scientist on two of these cruises. I also worked in the field and laboratory on the mechanics of how spilled oil interacts with sea ice, and made use of satellite data to study the large-scale sea ice behavior. This research led to my coming to work at NASA Headquarters in Washington, D.C., in 2006 as Cryospheric Program Manager and then to my current role as chief scientist of the Ice Bridge campaign.

 

One reason that I took the position at NASA and am continuing with the Ice Bridge work is my concern over the diminishing Arctic sea ice cover and the recent accelerating losses from the Greenland and Antarctic ice sheets. The excitement for me in helping to plan and run this campaign is to participate in the design of experiments to replace the observations made by the aging NASA ICESat satellite, and to focus airborne observations on the rapidly changing regions of the Greenland and Antarctic ice sheets.

 

For the Antarctic flights, we have a comprehensive suite of instruments: lasers for the ice surface elevation, ice-penetrating radar for the bedrock topography, snow radar for snow thickness on sea ice, a gravimeter to measure the shape of seawater-filled cavity beneath the ice tongues, a digital mapping camera to measure three-dimensional relief, and a variety of precision navigation tools to determine where we are and to allow us to follow the ICESat tracks.

 

This instrument suite should lead to a unique set of ice sheet and sea ice observations. And by comparing the measured ice elevations with previous ICESat tracks, we’ll be able to determine the rates at which the critical glaciers are losing volume.