NASA and the UK Space Agency have agreed to cooperate on NASA’s heliophysics mission, the Interstellar Mapping and Acceleration Probe (IMAP). The agreement, signed Sept. 22, 2021, will allow Imperial College London (ICL) to design and build one of IMAP’s 10 instruments – a magnetometer called MAG – as well as provide ground support and personnel necessary to support the instrument and the IMAP science team.
Scheduled to launch in 2025, IMAP will observe and map the Sun’s heliosphere – the volume of space filled with particles streaming out from the Sun, known as the solar wind – and study how it interacts with the local galactic neighborhood beyond. The boundary zone at the edge of the heliosphere offers protection from the harsher radiation of interstellar space; it may have played a role in creating a habitable solar system and is critical in NASA’s plans for safe human exploration of the Moon and Mars.
MAG will contribute to our understanding of the acceleration and transportation of charged particles in the heliosphere. It will do this by measuring the interplanetary magnetic field around the spacecraft. From these measurements, MAG will identify interplanetary shocks and measure the waves and turbulences that scatter particles.
MAG will also provide measurements for the IMAP Active Link for Real-Time (I-ALiRT) space weather monitoring service. With I-ALiRT, IMAP will enable new ways of forecasting space weather by streaming real-time observations of conditions headed towards Earth to operators on the ground.
MAG is a dual sensor fluxgate magnetometer and includes electronics, a power supply system, and an on-board computer. The two sensors are located on a boom to reduce the effects of magnetic interference from the spacecraft.
“The UK and the United States are working together on some of the most exciting space missions of our time, from the Mars Perseverance rover to the James Webb Space Telescope,” said Dr Paul Bate, Chief Executive of the UK Space Agency. “There is still so much we don’t know about the Sun and the behaviour of phenomena like the solar wind. This new partnership will help NASA answer some of these questions, using the expertise of scientists at Imperial College London. It is an excellent example of the importance of international collaboration in the study and exploration of our solar system.”
“IMAP will be doing some really exciting science that neatly fits with expertise we have at Imperial, both for understanding how particles get accelerated to the highest energies, and how our Sun interacts with our neighbourhood in the galaxy,” said Science Lead for MAG, Professor Tim Horbury from the Department of Physics at Imperial College London.
“The rest of the IMAP team and I are so pleased to have this partnership with the UK Space Agency and Imperial College London” said Professor David McComas, the IMAP principal investigator. “International collaboration such as this makes our mission even stronger.”
David McComas of Princeton University leads the IMAP mission and an international team of 24 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, will build the IMAP spacecraft and operate the mission for NASA. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes (STP) Program portfolio and newest addition to NASA’s fleet of heliophysics spacecraft. The Heliophysics Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the STP Program for the Heliophysics Division of NASA’s Science Mission Directorate.