NASA Mission to Study the Outer Boundaries of the Solar Wind Completes Key Milestone

NASA’s Interstellar Mapping and Acceleration Probe – IMAP – has completed a key milestone in mission development. After rigorous review, IMAP has passed what is known as Key Decision Point C, or KDP-C, which marks the mission’s progression from formulation to implementation.

As a modern-day celestial cartographer, IMAP will chart the very boundaries of the heliosphere – the bubble surrounding the Sun and planets that is inflated by the solar wind – and study how it interacts with the local galactic neighborhood beyond.

These measurements will help scientists better understand fundamental physics of the heliosphere and our place in the stellar neighborhood at scales both tiny and immense. It will also help scientists understand how the interaction of solar and stellar winds forms a barrier that shields the inner solar system from harmful cosmic rays, which will help protect astronauts.

IMAP will launch into orbit of Earth-Sun Lagrange point 1 – a location towards the Sun about a million miles from Earth ­– no earlier than 2025.

David McComas of Princeton University leads the IMAP mission and an international team of 24 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, will build the IMAP spacecraft and operate the mission for NASA. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes (STP) Program portfolio and newest addition to NASA’s fleet of heliophysics spacecraft. The Heliophysics Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the STP Program for the Heliophysics Division of NASA’s Science Mission Directorate.

NASA Adjusts IMAP Schedule to Accommodate COVID-19 Precautions

To accommodate schedule changes due to precautions regarding COVID-19, the preliminary design review for NASA’s Interstellar Mapping and Acceleration Probe, or IMAP, has been moved from February to May 2021. Similarly, the launch readiness date is delayed from Oct. 1, 2024, to Feb. 1, 2025.

Over the course of its mission, IMAP will explore and map the boundaries of our heliosphere – the volume of space filled with the wind from the Sun – and study how it interacts with the local galactic neighborhood beyond. These boundaries, which offer protection from the harsher radiation of interstellar space, may have played a role in creating a habitable solar system, and are critical in enabling safe human exploration of the Moon and Mars.

Designed with 10 scientific instruments to measure a large range of particles and fields, IMAP will investigate how particles are accelerated and determine the composition of particles and dust in our local neighborhood. IMAP also will enable and mature new ways of forecasting space weather, including geomagnetic storms and solar energetic particles, through streaming real-time observations to the ground.

IMAP will launch on a  Falcon 9 Full Thrust rocket provided by Space Exploration Technologies (SpaceX) of Hawthorne, California. This launch will include several other Rideshare missions: NASA’s Global Lyman-alpha Imagers of the Dynamic Exosphere, NASA’s Solar Cruiser, NASA’s Lunar Trailblazer, and NOAA’s Space Weather Follow-On L1.

Princeton University professor, David J. McComas leads the mission and an international team of 24 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland builds the spacecraft and operates the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes (STP) Program portfolio. The Heliophysics Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate.


NASA Awards Launch Services Contract for IMAP Mission

NASA has selected Space Exploration Technologies (SpaceX) of Hawthorne, California, to provide launch services for the agency’s Interstellar Mapping and Acceleration Probe (IMAP) mission, which includes four secondary payloads. IMAP will help researchers better understand the boundary of the heliosphere, a magnetic barrier surrounding our solar system. This region is where the constant flow of particles from our Sun, called the solar wind, collides with winds from other stars. This collision limits the amount of harmful cosmic radiation entering the heliosphere. IMAP will collect and map neutral particles that make it through, as well as investigate the fundamental processes of how particles are accelerated in space, from its vantage point orbiting the Sun at the Lagrange 1 point directly between the Sun and Earth. . .  [more]

NASA Selects Mission to Study Solar Wind Boundary of Outer Solar System

NASA has selected a science mission planned for launch in 2024 that will sample, analyze, and map particles streaming to Earth from the edges of interstellar space.

The Interstellar Mapping and Acceleration Probe (IMAP) mission will help researchers better understand the boundary of the heliosphere, a sort of magnetic bubble surrounding and protecting our solar system. This region is where the constant flow of particles from our Sun, called the solar wind, collides with material from the rest of the galaxy. This collision limits the amount of harmful cosmic radiation entering the heliosphere. IMAP will collect and analyze particles that make it through. . . .[more]