Space Flight Design Challenge ROCKSAT C-17 Update

Posted on by .

SPFC Mission Patch-RSC-17In an effort to provide students with the stepping stones necessary to carry out the goals of the Space Flight Design Challenge, academic institutions have been provided with the opportunity to gain hands-on experience through RockSat-C. The NASA IV&V Space Flight Design Challenge is an initiative aimed towards engaging students of West Virginia in the STEM disciplines needed to successfully build and test critical systems. By enhancing the knowledge and capabilities of students through hands-on spacecraft development, they will be enabled to compete in the development of their own flight systems in space. Primarily, the overall goal of this initiative is to foster innovative advancements in both high school and college students across the nation. As a result, students will be equipped to compete in the fabrication & operation of flight systems in Low Earth Orbit via amateur radio operations.

Through RockSat-C, students and mentors can actively participate in the design & build phases of their own scientific payload. Inevitably, this payload will be launched on a sounding rocket out of Wallops Flight Facility at the close of the academic school year. The fall semester is comprised of engaging students in the full design & review process whilst the primary goal of spring semester is to prepare each team for the Launch Readiness Review. In order to do so successfully, each of the payloads will undergo multiple phases of testing and integration to ensure its suitability for flight.

This year’s Rock Sat-C mission statement:

   “To embark on a collaborative effort with academic institutions across the state of West Virginia for development and expansion of knowledge and practical experience in designing, building, launching, and operating space payloads.”

In order to accomplish this vision, our teams have developed a variety of experiments that will inevitably benefit the small sat community. Of those scientific payloads are:

  1. Bridge Valley Community Technical College Stain Gauge Experiment
    1. Objective: To measure strain on a series of material samples and model flight path
  2. West Virginia University Langmuir Probe Experiment
    1. Objective: Measure plasma density in upper atmosphere
  3. Blue Field State College Vehicle and Inertial Measurement and Tracking Experiment
    1. Objective: To gather real-time flight data & Use this data to determine the flight path, trajectory, altitude, and rotation of the rocket
  4. Fairmont State University Flight Dynamics Analysis Experiment
    1. Objective: To capture and store real-time flight data, then show the flight path.
  5. Blue Ridge Community Technical College PiGen (Piezo Electric Generator) Experiment
    1. Objective: To measure the output of 3 Piezoelectric generators on the X Y and Z axis with 2 ADCs.
  6. West Virginia Wesleyan College Harvest Energy Experiment

    1. Objective: To harvest energy by using a Thermocouple and Piezoelectric crystal on the rocket flight.

Isometric ViewDimetric View

Shown above is an Isometric (top) and Dimetric (bottom) view of the canister. (Image by Roger Targosky)

Throughout the Conceptual, Preliminary, and Critical Design review, WV-SPACE has displayed both scientific merit & a feasible implementation plan. At this point the payload has been largely cleared by COSGC and Wallops Flight Facility and has been selected to fly in canister #5 and share space Oregon Institute of Technology. The payload is projected to launch aboard a Terrier-Improved Orion sounding rocket on June 22nd 2017.

Manifest

We would also like to send ours thanks to NASA’s Independent Verification & Validation Program for supporting our student outreach initiatives and congratulate all of our dedicated teams for being a part of the Space Flight Design Challenge and cleared for launch.

Team_Photo

Emily Certain | Student Trainee
NASA’s Independent Verification & Validation Program

 

 

 

 

 

 

White Hall Elementary School Mighty Builders Team Wins West Virginia’s First Spacecraft LEGO Challenge

Posted on by .

This fall, White Hall Elementary School in White Hall, W.Va., sponsored a First Lego League Junior (FLL Jr.) team.  Eleven fourth-grade team members and two coaches met twice a week for several months to develop a LEGO model, poster and presentation to illustrate what they learned as part of this year’s CREATURE CRAZE Challenge.  As part of their meetings, the Mighty Builders participated in West Virginia’s First Spacecraft LEGO Challenge.

Suder Blog Entry_STF1 Lego Winners

Image Credit: Mark Suder

The challenge fit naturally into the learning the students were doing as part of the CREATURE CRAZE Challenge.

“The team and building rules were similar to what we were doing for FLL Jr., and the kids needed to begin learning about our WeDo LEGO set, how the motors and sensors work, and how to program it, so this challenge seemed like a natural fit for our meetings,” coach Mark Suder said.

With the guidance of their coaches, the kids split into several teams to create LEGO satellite models, then chose one to add motors, sensors and a brain to.  Following the addition of and learning about these parts, the kids brainstormed about the questions that were posed to them for West Virginia’s First Spacecraft LEGO Challenge.  Those questions were:

  1. What you want to have in West Virginia’s second spacecraft and why?
  2. What is different from your LEGO STF-1 and NASA’s LEGO STF-1 and why?
  3. How do CubeSats affect space exploration around the world?
Suder Blog Entry_STF1 Lego Winners 2

Image Credit: Mark Suder

“Creative, energetic, smart, enthusiastic!  Those are the words I would use to describe the students,” Suder said. “As the coach, I have been both proud and inspired to be part of this team.  These kids are the future of the country, and with all the negative news these days it is neat to see that there is also a lot of hope for the future based on these inspirational young people of today.  Besides, who doesn’t like playing with LEGOs?”

The team was incredibly excited to learn that they had won the First Spacecraft LEGO Challenge and was excited to tour NASA IV&V and receive their first place prize.

In addition to the tour, and to both congratulate and celebrate the accomplishments of this team, NASA’s IV&V Program invited the students, their teachers, as well as the school’s principal to attend IV&V’s Internal Award Event. The students were presented with certificates of appreciation, and in return, presented IV&V’s Director Greg Blaney, as well as the program, with a thank you card from the team.

20161213-Christmas Auction Party_00036

Image Credit: Clayton Peachey

20161213-Christmas Auction Party_00037 Award group Mighty Builders

Image Credit: Clayton Peachey

Mark Suder | Systems Analyst
NASA’s Independent Verification & Validation Program

JWST Team Earns Honorable Mention in NASA Software of the Year Competition

Posted on by .
IV&V SOY_2016

Image Credit: Bailee Miller

The NASA Software of the Year competition is an annual competition sponsored by the Offices of the Chief Engineer, Safety and Mission Assurance (SMA), and the Chief Information Officer.  Software teams across each of the NASA centers submit software applications and suites submit an extensive application detailing their software, all software project documentation, reference letters, SMA documentation, and associated publications. The teams give a presentation at NASA headquarters in Washington, D.C. and then the applications and presentations are reviewed by a special Software Panel with representatives from across the agency. The applications are reviewed on the software’s innovativeness, impact, and usability. 

In 2016, the Jon McBride Software Testing and Research (JSTAR) team submitted the James Webb Space Telescope Integration Simulation and Test (JIST) software for consideration and was the sole representative for Goddard Space Flight Center and IV&V Program. JIST is a software-only simulation environment of the JWST Spacecraft that provides the capability to exercise the unmodified flight software binaries as delivered from the JWST development organizations.  JIST is comprised of software from multiple organizations and includes software from nine separate development teams. To demonstrate the cost-effectiveness of a JIST-like solution, a new instance of JIST can be deployed for approximately $10,400; whereas to deploy a hardware-equivalent environment, the cost would be approximately $1,019,087, a cost reduction of 99%.

In 2016, seven centers competed in the competition. JIST received honorable mention in the competition and the co-winners were from Langley Research Center (Traffic Awareness Planner) and Ames Research Center (Pegasus 5.2: Software for Automated Pre-Processing of Overset CFD Grids). 

A special thank you goes to everyone who supported the team through JIST usage, reference letters, and peer reviews of application materials and presentations. In addition, thank you to Enidia Santiago and Sia Argue from the GSFC technology office for supporting the nomination and the team in its submission. It is a great honor, and we were proud to represent GSFC and IV&V. 

 

Justin Morris
Computer Engineer
NASA’s Independent Verification & Validation Program

IV&V Awaits Juno’s Jupiter Orbit Insertion

Posted on by .

The average person may not be able to identify every planet in our solar system; however, most will recognize Jupiter, due to its enormous size and Great Red Spot.  This giant planet is the fifth planet from our sun and is also the largest planet in our solar system. It is named after the king of the gods from Roman mythology.

PIA02873

To explore and better understand it’s evolution, NASA created the mission, Juno. While an attempt to make the mission name an actual acronym, Juno is simply named after the wife of the king of the gods, Jupiter. The spacecraft will investigate the planet’s origins, interior structure, deep atmosphere and magnetosphere. Juno’s study of Jupiter will help us to understand the history of our own solar system and provide new insight into how planetary systems form and develop in our galaxy and beyond.

Juno’s payload includes the following:

  • A gravity/radio science system (Gravity Science)
  • A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
  • A vector magnetometer (MAG)
  • Plasma and energetic particle detectors (JADE and JEDI)
  • A radio/plasma wave experiment (Waves)
  • An ultraviolet imager/spectrometer (UVS)
  • An infrared imager/spectrometer (JIRAM)
  • Color camera (JunoCam) – JunoCam is not necessary for scientific purposes; however, it will likely provide the public with what should be some of the most vivid images of the giant planet ever captured.

The figure below shows the Juno orbiter along with additional details.

567922main_junospacecraft0711

We worked alongside with the development team for four years, sometimes at the Jet Propulsion Laboratory (JPL) in Pasadena, California, and sometimes at Lockheed Martin in Denver, Colorado. We all came to admire the elegant, intricate mission design, and the profound and complex science objectives. While none too great to overcome, there were certainly challenges we faced everywhere. Often, these challenges were the small things that were the most difficult. The overall design and implementation was nearly unchanged from the beginning days. For our IV&V team, it was a project where we all learned new ways of describing and viewing our work. An open mind was required at all times, and creativity was at a premium. In the end we were successful, and that made the launch even more amazing.

On August 5, 2011, NASA launched the Juno spacecraft from Cape Canaveral, Florida. It was a blistering hot and humid day typical for Florida this time of year. A couple of the team members from the Juno IV&V team were lucky enough to attend the launch. It was very exciting, especially never having attended a launch before. There were a couple of planned holds during the countdown, however, during one of these, there was a helium leak discovered on the ground system that threatened the launch to be canceled. Everyone waited anxiously while the intense heat from the sun continued to beat down. A bold and overheated member of our group talked the refreshment stand out of a bucket of ice which we promptly stuffed into our hats and shirts in order to cool down. It was effective, but we looked like shipwreck survivors. Making matters worse, a boat ventured into a restricted area and had to be escorted out of the area before the launch could proceed. Fortunately, these issues were resolved before the launch window expired, and the Juno countdown continued. At T-0, the Atlas V launch vehicle blasted off.  Speakers mounted near the spectators allowed the crowed to start to hear the rumblings from the rocket real time. The static-like sound intensified until overtaken by the actual thundering sounds from the rocket once the sound waves made their way across the bay. The rocket seemed to hover at first, but quickly accelerated. After a short time, the rocket was out of sight.  It was a tremendous relief to see the rocket leave our view without any sign of an anomaly. However, the bigger relief was about an hour later when we heard that the Juno separated successfully from the launch vehicle.

Nearly five years later, Juno is scheduled to reach Jupiter on July 4, 2016 during the maneuver called Jupiter Orbit Insertion (JOI). JOI is the most risky step remaining in the mission. This type of maneuver can and has failed on past missions. So even though the IV&V team was able to develop significant confidence that the flight software would successfully support this maneuver, there still exists a possibility that something could go wrong. However, we’ll all be anxiously awaiting this JOI and look forward to the data that will come following the 37 orbits the craft will make around this giant planet.

Charlie Broadwater | Engineer
Sam Brown | IV&V Analyst
NASA’s Independent Verification & Validation Program

STF-1 Update 2

Posted on by .

The Simulation-to-Flight 1 (STF-1) team has been making significant progress since the last blog post. As per the primary mission objective, some software-only simulators have been developed and are currently released as version 1 NOS3 or the NASA Operational Simulator for Small Satellites. These simulators will aid in flight software development that is currently underway.  The current focus is on developing the core applications that will drive the mission. This development phase will last for approximately three months before integration and testing begins. The clean room that will be used by STF-1 has been completed and is ready to accept components that have already started arriving. Below is a picture of the cleanroom ready for the ribbon cutting ceremony here in the coming weeks.

Clean Room

The components have already been arriving and are nearly ready to begin testing. The science teams have already begun designing systems and PCBs that will perform the experiments. The current component status can be seen in the table below. Each science team at West Virginia University (WVU) has been working diligently to meet the delivery date at the end of this year so that testing can begin.

Hardware Status
Onboard Computer Received
Solar Cells Received
Power System Ordered
Chassis Ordered
ITC Designed Solar Panel PCBs Designed – Out for Quote
Radio Ordered
Clean Room Assembled and Setup for Ribbon Cutting
Deployable Antenna Ordered
Camera Received

The anatomy of the spacecraft is depicted below. The chassis selected is the Innovative Solutions In Space three unit design.  This allows for each unit, or cube, to be assembled independently before full spacecraft integration.  The antenna is also specially designed to fit the chassis, depicted on what is actually the bottom of the spacecraft that is upside down in the picture.  Having the antennas on the underside of the spacecraft allows for use of the extra space, nicknamed the tuna can due to its size, in the launcher to house the GPS antenna.

Anatomy of STF-1

The Latest from STF-1

Posted on by .

The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will host payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

The mission is progressing on schedule and targeting a late 2016 launch. Our initial launch opportunity in November 2016 was not acquired, so the team will continue to work while pursuing another launch opportunity with the NASA CubeSat Launch Initiative (CSLI). The team still has plenty of work to do. Following a successful Table Top Review in April 2015 the team identified the major components for the spacecraft bus and began procurement. The GOMSpace Nanomind A3200 flight computer, and SolAero Tech solar cells have arrived. We are currently awaiting the delivery of the UHF radio and antenna, spacecraft chassis, and our electrical power systems. Not all of the components are COTS, so the team has carefully designed solar panels and interface cards by leveraging the lessons learned from other GSFC CubeSats. A clean room and lab space have also been secured to be used for the integration and testing of the spacecraft.

STF1_1506_01

The flight software (FSW) for STF-1 is currently in development. The team has branched from the default version of GSFC’s Core Flight Software (cFE/CFS), and has begun integrating applications used on the Dellingr CubeSat mission. CFS has been integrated with the ITC developed simulation software, NOS Engine, to allow for simulation of hardware components either not yet acquired, or still in development. An initial version of the STF-1 Advanced CubeSat Simulation Library (ACSL) was provided, along with a development environment, to the WVU science teams in July. The STF-1 team plans to continue maturing the ACSL as more fidelity is needed to support the FSW development.

Ground Systems support will be provided by NASA’s Wallops Flight Facility located on the coast of Virginia. The STF-1 team has chosen to use the same communications hardware as the other GSFC CubeSats so that ground station support is the same across missions. The 18M dish at Wallops will provide the team with up to 3.0Mbps downlink speed.

The Pluto Mission: “High Fives” for a Resounding Success

Posted on by .

When Clyde Tombaugh (1906–1997) discovered a tiny object on a pair of photographic plates, one has to wonder if he could have foreseen that it would take 62 more years to find another object in the distant solar system or that it would lead to a yet to be discovered region of space.  In 1930, rocketry was still in its infancy and deep space travel was the work of popular science fiction. Therefore, it would have been a far off dream for Tombaugh to think about visiting his discovery, which we now know as Pluto. However, on July 14, 2015, that is exactly what he will do, when the New Horizons spacecraft makes a Flyby of the Pluto-Charon system. New Horizons is carrying a sample of Tombaugh’s ashes donated to the mission by his wife, Patricia Tombaugh (1912–2012), to commemorate his discovery of Pluto.

Tombaugh_732

Clyde Tombaugh: Discoverer of Pluto February 4, 1906 to January 17, 1997.

For people that grew up in the educational system of the United States prior to 1992, Pluto was always the Ninth planet from the Sun and an anomaly when compared to the rest of the planets in our solar system. The Inner planets are characterized by being similar rocky bodies that are relatively close to the sun. Next there were the Outer planets, consisting of large gaseous planets with tumultuous atmospheres. Then there was Pluto; a small planet rotating around the sun in an elliptical orbit that was out of plane with the rest of the planets. The questions of why Pluto was different were not able to be answered until technology allowed for better views of deep space. In 1992, The first trans-Neptunian object since Pluto and Charon was discovered in 1992 and since then more than 1,500 objects have been identified. This region is characterized by small ice worlds that orbit the sun in vast number of Astronomical Units beyond Pluto and has been called the Kuiper Belt.

The idea to send a probe to visit the region started to form in the early-1990’s. And although there were many proposals for missions that would visit the small planet, it wasn’t until NASA established as part of the New Frontiers program that a stable stream of funding was made available to fund such a mission. It was in this climate that the New Horizons mission was born. Led by Alan Stern as Principle Investigator, New Horizons is a joint effort between the South West Research Institute and the Johns Hopkins University Applied Physics Laboratory (APL). APL provides for the mission management of the spacecraft.

New Horizons was launched from Kennedy Space Center on January 19, 2006 aboard an Atlas V rocket with second and third stages to provide it the necessary velocity to be the first spacecraft launched directly into a solar escape trajectory. The primary goals of the mission are to map the surface composition and to characterize the global geology and atmosphere of Pluto. This data will help provide context for the formulation of the Pluto system and establish some understanding of its role in the formation of the early solar system. Its extended mission is to encounter one or more objects in the Kuiper Belt beyond Pluto and conduct similar data collection exercises.

In order to accomplish these goals, the spacecraft has a suite of seven science instruments.

  1. Alice is an ultraviolet spectrometer used for measuring gas composition
  2. Ralph combines an infrared spectrometer (LEISA) for mapping surface composition with a color optical imager (MVIC) for mapping surface structure and composition
  3. REX is a radio experiment for measuring atmospheric composition and temperature
  4. LORRI is an optical telescope that provides the highest resolution imaging of the surface
  5. PEPSSI is a plasma-sensing instrument for measuring particles escaping from Pluto’s atmosphere
  6. SWAP is a plasma-sensing instrument for measuring the properties of the solar wind at Pluto, Pluto’s atmospheric escape rate, and for searching for a magnetosphere around Pluto. The “solar wind” is a stream of charged particles streaming away from the Sun at high speed.
  7. SDC, an instrument used to measure dust impacts at the New Horizons spacecraft during its entire trajectory, was built by students at the University of Colorado!
New_Horizons_Instruments

New Horizons spacecraft instrument layout.

To get a sense of the size of the spacecraft, it is possible to see a scale model of it hanging in the Udvar-Hazy Center, which is the National Air & Space Museum Annex at Dulles International Airport. The spacecraft has been compared to the size of a baby grand piano.

new_horizons_udvar_hazy

Model of New Horizons hanging in the Udvar-Hazy National Air & Space Annex.

Subsequent to the launch of New Horizons, the International Astronomical Union reclassified Pluto from planet to dwarf planet status. However, this does not diminish the historical nature of the mission. The science data collected will greatly enhance the science communities understanding of Pluto, be able to validate assumptions and speculations about its surface features and compositions, and hopefully inspire the next generation of deep space scientists.

My Recollections of New Horizons IV&V

The IV&V planning and scoping efforts for the New Horizons mission began in late 2002. The CARA process was used in establishing the scope of the analyses performed. It was determined that Command and Data Handling (C&DH), Guidance, Navigation & Control (GN&C) and the Ralph instrument were to receive full life-cycle IV&V. There were two instruments which were determined to be of sufficiently low risk and not significant contributors to the primary science goals and therefore were not provided any IV&V coverage.  Those were the REX and SDC instruments. The remainder of the instruments suite were addressed via IV&V requirements and test analysis activities. There was also some initial work performed on the Ground Software, but it was high reuse and it was determined that further work in that area would not be productive use of IV&V efforts.

One of the tasks performed during the New Horizons test campaign was an analysis of the Comprehensive Performance tests. This required additional IV&V analysis resources to be added to support the timely analysis of that large set of test artifacts. This type of analysis was needed due to the way that APL had structured their acceptance testing, for which IV&V had generated a risk. They had placed requirements verification into the system test world where it was exercised in a more day in the life kind of way.

Due to the tight constraints that were placed on the launch window, APL decided to slip functionality to a post-launch upload. They had one period that extended in January 2006 and allowed for the Jupiter Gravitational Assist and one that was in February 2006 that was a direct to Pluto launch and would have added four years to the time line (missing those two would have been a significant launch delay). They ended up making the window for the gravitational assist. Therefore, we performed C&DH and GN&C analysis post-launch, primarily this was code analysis and final test analysis. I believe there were two in-flight issues with the GN&C processor, which we supported. Ultimately, one was determined to be in the Detection and Correction Code (EDAC) hardware and the other was a problem with the autocoder.

Over the 9 year history of the mission, there were only two safe mode entries, that I am aware of. One occurred back in 2007 and was similar to the GN&C reset related to EDAC hardware. The other happened July 4th and appeared to come from trying to use the software differently than originally intended. The original operations philosophy was that they would start N number of weeks prior to the fly-by and start taking data. They would keep taking data until about the same N number of weeks past the fly-by (part of that was the occultation data collection and some radio experiment), then compress, then downlink. Downlink was to take on the order of nine months. Over the years, it seems they have revamped their operational plans based on the lessons learned from their Jupiter fly-by and from yearly encounter planning meetings. So when the safe mode entry happened, they were uploading a command sequence, while taking data and compressing data, so the sequencing got overwhelmed.

The bright heart shape area is possibly covered with a frost of frozen methane, nitrogen, and/or carbon monoxide

The bright heart shape area is possibly covered with a frost of frozen methane, nitrogen, and/or carbon monoxide

I find this mission fascinating. In the time that New Horizons has been cruising to Pluto, I was married, my son was born, I watched him learn to crawl, learn to talk, learn to walk, lost my wife, and have seen my son complete nearly a quarter of his schooling.  I hope this event inspires kids of his age to aspire to be the next generation of discovery leaders.

Van Casdorph
Systems Engineer
NASA’s Independent Verification & Validation Program

The Latest from the STF-1 Team

Posted on by .

The development of the first CubeSat to be built in the state of West Virginia, Simulation-to-Flight 1 (STF-1), is underway. On April 30, 2015, the STF-1 development team held its first table-top review to walk through the mission plan, technical objectives, components, budgets (mass, power, volume, communications, and cost), risks and schedule. The team also identified all major system components. These components include the GOMspace A3200 on-board computer, L-3 Cadet radio, batteries and electrical power system from Clydespace and Pumpkin 3U Chassis. This review was a huge success!

In addition, in late April 2015, the STF-1 team was contacted by the NASA Education Launch of Nanosatellites (ELaNa) effort, with respect to a potential launch opportunity, and could launch as early as November 2016. The team is anxiously waiting to hear if we have a launch.

In the meantime, the STF-1 team is pushing forward. The team is actively working on power simulations to ensure there is sufficient power generation to support all mission objectives, development of an Advanced CubeSat Simulation Library (ACSL), initiating development of all four science instruments, and beginning to purchase spacecraft components.

The development and demonstration of the ACSL is the primary mission objective and is aimed to reduce hardware reliance and provide a rapidly deployable CubeSat development and test environment. We are excited about our simulation approach and will go into more details later as the architecture matures. In the meantime, take some time and submit your best ideas to design the Mission Patch for West Virginia’s first CubeSat in SPACE!

Mission Website: www.stf1.com

Mission Patch Design: http://www.wvspacegrant.org/wp-content/uploads/2015/04/Mission-Patch-Design-STF1.pdf

-The STF-1 Team

Intern Q&A: Georgette Ball and Samuel Talkington

Posted on by .

IMG_1796
Name: Georgette Ball
Home Town: Fairmont, W.Va.
High School Attended: Fairmont Senior High School
College: West Virginia University
Major: Industrial and Management Systems Engineering
Why you applied for a NASA internship? I applied for a NASA internship because I have always been intrigued by government services and wanted to have this opportunity to broaden my knowledge. My goal is to pursue a government related engineering job and I believe NASA would be a great opportunity to gain experience and come closer to attaining that goal.
What are you doing for NASA (brief summary of intern project)? I am working with the WV Space Public Outreach Team (SPOT) as a presentation developer. Programs such as SPOT are great organizations that reach out to younger generations and ignite interest in Science, Technology, Engineering and Math (STEM) disciplines.
What do you like most about working for NASA? If I had to choose what I like most so far it would definitely be the people and culture here at NASA IV&V. I feel very welcomed here and everyone is so helpful.

IMG_1731Name: Samuel Takington
Home Town: Clarksburg, W.Va.
High School Attended: Notre Dame High School
Why you applied for a NASA internship? Applying for a NASA internship gave me the opportunity to practice my skills with science and computer programming, which continue to grow daily. I applied expecting a great opportunity to interact with individuals who you genuinely feel are contributing to the betterment of humanity’s scientific endeavors. It’s an excellent college reference, and it’s simply an awesome experience that I will remember for years to come.
What are you doing for NASA (brief summary of intern project)?  This Summer I am working with the Space Launch System rocket engines team. The SLS is the “next generation” of rocketry that will, when completed, be responsible for the next manned space missions based out of America. I am helping to ensure that the algorithms behind the engine itself are sound and correct by creating applications in Java to automatically validate the math. It’s thrilling to be part of such a large picture, and to be tangibly contributing to the safety of America’s next astronauts.
What do you like most about working for NASA? The atmosphere is fairly relaxed and suited to my personality. It’s nice to be surrounded by like-minded people who share a passion for science and other similar interests.

 

 

 

Intern Q&A: Cortney Mercer and Nick Ohi

Posted on by .

IMG_1729
Name: Cortney Mercer
Home Town: Morgantown, WV
High School Attended/College: University High School/West Virginia University in the fall of 2014, planning to study mechanical and aerospace engineering
Why you applied for a NASA internship? I have always been interested in STEM fields and interested in space flight, I hope to work for NASA, another space organization or an underwater robotics company in the future. This opportunity just helps me reach for my goals!
What are you doing for NASA (brief summary of intern project)? I am working with the Robotics Capabilities Development (CD) here at NASA IV&V to build a test-bed as well as develop procedures to perform verification and validation on computer vision software. I will be working with other high school and college interns here at the facility, as well as the members of the Robotic CD team to test different computer vision algorithms, this will be useful in situations such as asteroid redirect and automated satellite repair.
What do you like most about working for NASA? I like working for NASA because it gives me the opportunity to talk to experienced people in a field that I am interested in, it gives me the opportunity to learn about my potential career.

IMG_1737
Name:
Nick Ohi
Home Town: Morgantown, WV
High School Attended: Homeschooled
College Attending: West Virginia University
Semester/Year: Entering Senior Year / Finished Junior Year
Major: Dual Mechanical and Aerospace Engineering
Why you applied for a NASA internship? I have always been very interested in space and everything STEM related. I would like to work for NASA or another organization involved in spaceflight for my career, so this opportunity allows me to gain experience pursuing that goal.
What are you doing for NASA (brief summary of intern project)? My project is to work with the Robotics Capabilities Development (CD) team here at IV&V and develop a test-bed and document procedures for doing IV&V on robotic systems that involve computer vision. I will be working with other college and high school interns as well as member of the Robotics CD team test different computer vision algorithms in scenarios such as automated satellite repair and asteroid redirection.
What do you like most about working for NASA? Not only does this internship opportunity provide me with valuable experience towards my career goals, I really enjoy the work environment here at IV&V. Everyone, from the other interns to the permanent employees are all great people to work with.

 

 

 

 

Page 1 of 41234