From Art to Space: Meet IXPE Flight Controller Kacie Davis

By Rick Smith

If the secret to happiness is pursuing and achieving goals that bring contentment to both the heart and the intellect, then Kacie Davis, a flight controller for NASA’s Imaging X-ray Polarimetry Explorer (IXPE), is living her best life – and she took an unexpected path to get there.

LASP’s Kacie Davis, a women with long hair and glasses, is smiling and is sitting in front of computer screens
IXPE flight controller Kacie Davis discusses the academic journey that took her from earning a fine arts degree to studying astronomy at the University of Colorado-Boulder and then to her role in mission operations at LASP, supporting NASA’s innovative X-ray imaging mission. (Video still courtesy of CU-Boulder)

Initially, it wasn’t the Leawood, Kansas, native’s intent to pursue a STEM career – a path which led her to a seat on console in NASA’s partner organization, the Laboratory for Atmospheric and Space Physics (LASP) on the University of Colorado-Boulder campus.

Davis originally went to school to refine her art skills, earning undergraduate degrees in drawing and photography from Kansas State University in Manhattan, Kansas, and a master’s in studio art from the University of Connecticut in Storrs. Along the way she jockeyed a register at a videogame chain store to pay her rent, taught drawing and multimedia courses at U-Conn, and earned a first-degree black belt in taekwondo.

But some elusive question kept her searching for her professional niche. She had always created “abstract expressionist art that had a tendency to echo what space images look like,” she said. “I kept hearing that in my art critiques – and it slowly piqued my interest in outer space and the universe.” That led her to pursue an astronomy degree at CU-Boulder.

“It felt like this is a place where people get stuff done, and keep getting things done,” she said. “It was inspiring.”

It wasn’t an easy path for an artist whose last mathematics courses had been at least a decade earlier. “I’d never taken physics!” she said. “At first, I wasn’t following a lot of what my classmates and professors were talking about.”

But the science spurred her on – along with the growing desire to help answer some of the oldest universal questions known to humanity, to aid in unlocking secrets of the most powerful and mysterious space phenomena: black holes, quasars, and more. She earned a bachelor’s degree in astronomy in 2020, and became an IXPE flight controller in 2021.

Today, Davis spends much of her time as a flight controller monitoring and directing IXPE’s work as the spacecraft observes and tracks polarized X-rays emitted by powerful celestial objects. Imaging in space is often a one-dimensional process, snapping a photograph and observing the results, but IXPE delves deeper, she said. IXPE measures X-ray polarization, a property of light related to the orientation of the waves’ vibrations.

“Polarimetry is two-dimensional, measuring the direction of X-ray photons flowing away from their source, aiding us in determining brightness and the path of travel, where an object came from and where it might be heading,” she said. “IXPE can even help us measure the spin of black holes – something we’ve never directly measured before. How exciting is that!”

She also regularly works with undergraduate student trainees in the LASP, helping them hone the mission-ops skills that will, in time, enable them to chair a flight controller’s post of their own.

Both aspects of the work, she said, “make me feel like I’m contributing to finding answers to the unknown – which is what I’d been searching for in art. That is quite rewarding.”

In the first months of 2022, Davis was thrilled to be part of the team that helped IXPE acquire its first target of study, Cassiopeia A – the remains of a star that exploded in the 17th century. Ten light-years in diameter, “Cas-A” is a bright ball of superheated gas and glowing cosmic ray particles some 11,000 light-years from Earth.

“We’ve looked at Cas-A a million times, but IXPE showed us more than we’d ever seen before,” Davis said. “It’s a brand-new set of eyes, looking at the universe in a completely new way.”

Not a bad way to describe Davis herself.

IXPE Mission Team Profile: The Laboratory for Atmospheric and Space Physics University of Colorado-Boulder

By Rick Smith

As NASA’s Imaging X-ray Polarimetry Explorer mission explores black holes, neutron stars, and other cosmic phenomena – helping to answer fundamental questions about extreme space environments – it relies on the mission operations team at the Laboratory for Atmospheric and Space Physics, or LASP.

Some 700 people – engineers, scientists, mission-operations personnel and data specialists – staff the Laboratory for Atmospheric and Space Physics, housed on the campus of the University of Colorado-Boulder.

College students sit as computers lined in a row to work on IXPE.
Student command controllers – and aerospace engineering science majors – Adrian Bryant, left, and Rithik Gangopadhyay, center, work with IXPE flight controller Kacie Davis, monitoring NASA’s Imaging X-ray Polarimetry Explorer spacecraft from the mission operations center at the Laboratory for Atmospheric and Space Physics on the campus of the University of Colorado-Boulder. Between 100-150 undergraduate and graduate students help maintain around-the-clock LASP operations. (NASA/CU-Boulder)

For the IXPE mission, LASP flight controllers and support teams monitor and maintain all command and control functions for the spacecraft, as well as planning and scheduling, data integrity, and spacecraft health and safety.

“I get very excited about IXPE science results,” said LASP flight controller Kacie Davis. “IXPE is unique and groundbreaking because it measures polarized X-ray imagery – tracing light back to its source by precisely measuring its brightness and the direction in which photons flow from the source.”

Research leads in the IXPE Science Operations Center at NASA’s Marshall Space Flight Center in Huntsville, Alabama, identify targets and instruct LASP flight controllers to point at them for specific intervals, fine-tune calibrations, and collect the resulting data. All raw-data findings are processed and delivered to the primary IXPE science team within seven days of each completed observation.

Most of the cosmic objects IXPE observes are part of a carefully managed, year-long science operations plan, but the LASP team also may get alerted to reposition the spacecraft to observe unique targets of opportunity, known as “TOOs” in mission-ops vernacular. Such phenomena – a new supernova, perhaps, or an overstuffed black hole trying to digest a neutron star – are rare, but the LASP team is quick to respond, at any hour.

“It’s a lot of work and a quick turnaround, like having a child,” said researcher Stephanie Ruswick, who in late 2022 will succeed LASP’s current flight director, Darren Osborne. “The other night, my 1-year-old slept through the night… but IXPE did not! Our team is always ready to step up and meet those unanticipated requests.”

Trained students on console
The LASP team includes a cadre of CU-Boulder undergraduates, Osborne said – a big advantage for career-minded engineering and science students.

A college aded young woman sits at a computer.
Researcher Stephanie Ruswick, front, LASP’s incoming flight director, oversees IXPE flight operations alongside student lead Alexander Pichler, center, and Rithik Gangopadhyay, both aerospace engineering students at the University of Colorado-Boulder. IXPE – orbiting some 370 miles from Earth – enables researchers to study polarized X-ray emissions from black holes, neutron stars, pulsars, and other sources. (NASA/CU-Boulder)

The summer prior to their junior year, students can enroll in an intensive, 12-week training program to join the team. They train side-by-side with certified LASP command controllers, learning all they can about executing flight operations, monitoring the health of spacecraft in flight, and troubleshooting issues in real time. Each student must complete a checklist of 300 mission-critical tasks on console and pass three written exams.

The paid positions don’t earn the undergrads course credit at the university, “but it gives them a definite leg up on their career goals,” Osborne said. “It’s a big commitment.”

Among those undergraduates now on console is Alexander Pichler, an aerospace engineering senior and the student lead for IXPE. He said there’s no substitute for learning in a practical environment like this one, which complements and informs every facet of his classroom education.

“It really has been an extraordinary opportunity,” said Pichler, now midway through his second year on the LASP team. “Now and then, I step back and think ‘I’m sending commands to a spacecraft that’s up there right now, helping to expand our understanding of the universe.’ It’s a truly horizon-widening experience.”

Davis, who graduated from CU-Boulder in 2020 with a degree in astronomy before joining the mission operations team, agrees.

“We’re doing brand new things that have never been done before, poking at big questions a lot of people shy away from: How is this possible? How can this exist?” she said. “It’s so exciting to be a part of it – helping to further a larger scientific conversation.”

More about LASP
Founded in 1948 on the campus of the University of Colorado-Boulder, LASP initially was known as the Upper Air Laboratory, where scientists studied the upper atmosphere using instruments, stabilizing technologies and pointing platforms of their own design. When researchers spun off in 1956 to form Ball Aerospace & Technologies Corporation in Boulder, the university expanded its own program and renamed the facility.

A team of people of LASP sit at computer desks lined against the wall to work on IXPE.
Credits: LASP

Since then, LASP has sent an instrument to every planet in the solar system and beyond, contributing imaging and sensing data to a variety of high-profile NASA missions, including Galileo, Mariner, Viking, and LADEE. LADEE, flown in 2013 and 2014, helped NASA better understand electrostatically charged dust on the Moon – a crucial need for Artemis-era human exploration of the lunar surface. The LASP team also led mission operations for NASA’s Kepler spacecraft – which identified more than 2,500 verified planets orbiting distant stars from 2009 to 2018.

And the work continues. LASP will participate in the upcoming Near-Earth Object Surveyor mission to spot and track large asteroids and comets that could pose a risk to Earth – and Libera, tracking climate change by documenting energy dispersal from Earth’s atmosphere. Both missions are scheduled to launch later in this decade.

More about IXPE
Managed by Marshall, IXPE is a collaborative effort with LASP; Ball Aerospace; the Italian Space Agency; McGill University in Montreal; Massachusetts Institute of Technology in Cambridge, Massachusetts; Roma Tre University in Rome; Stanford University in Stanford, California; and OHB Italia in Milan, Italy.

Molly Porter
NASA’s Marshall Space Flight Center