Launch Date Set for NASA’s Laser Communications Relay Demonstration

NASA’s Laser Communications Relay Demonstration (LCRD) will launch aboard the U.S. Department of Defense’s (DoD) Space Test Program Satellite-6 (STPSat-6) spacecraft, targeted for Monday, Nov. 22, 2021 on a United Launch Alliance Atlas V 551 rocket from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The LCRD technology demonstration is a step towards making operational laser, or optical, communications a reality. As space missions generate and collect more data, higher bandwidth communications technologies are needed to send it all back home. Laser communications will significantly benefit missions by increasing bandwidth 10 to 100 times more than radio frequency systems.

LCRD will implement various laser experiments to test the technology’s functionality and capabilities. Technology demonstrations like LCRD will enable the use of laser communications systems for future missions as NASA works to establish a robust presence on the Moon and prepares for crewed missions to Mars.

STPSat-6 is part of the third Space Test Program, or STP-3. To learn more about STP-3, visit: www.ulalaunch.com.

To stay updated about LCRD and laser communications, visit: https://www.nasa.gov/lasercomms.

Orion ‘Powerhouse’ for Artemis II Arrives at Kennedy

The European Service Module (ESM) for NASA’s Orion spacecraft arrives at the Launch and Landing Facility at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 14, 2021.
The European Service Module for NASA’s Orion spacecraft arrives at the Launch and Landing Facility at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 14, 2021. Making the journey from the Airbus Facility in Bremen, Germany, aboard a Russian Antonov aircraft, the service module will be transferred to Kennedy’s Neil A. Armstrong Operations and Checkout Facility. Photo credit: NASA/Isaac Watson

Built by teams at ESA (European Space Agency) and aerospace corporation Airbus, the European Service Module for NASA’s Orion spacecraft arrived at NASA’s Kennedy Space Center in Florida on Thursday, Oct. 14, aboard the Russian Antonov aircraft. This service module will be used for Artemis II, the first Artemis mission flying crew aboard Orion. Service module assembly was completed at the Airbus facility in Bremen, Germany, and the module traveled across the world on its journey to Kennedy.

The service module is the powerhouse that will fuel and propel Orion in space. It stores the spacecraft’s propulsion, thermal control, electrical power, and critical life support systems such as water, oxygen, and nitrogen.

The service module will be transferred from the Launch and Landing Facility to Kennedy’s Neil A. Armstrong Operations and Checkout Facility where teams from NASA and Lockheed Martin will integrate it with the crew module adapter and crew module, already housed in the facility.

With Artemis missions, NASA will land the first woman and the first person of color on the lunar surface. Artemis II will be the first crewed flight test of NASA’s Space Launch System and Orion, paving the way for human exploration to the Moon and Mars.

NASA, Boeing Update Starliner Orbital Flight Test-2 Status

Starliner
The Boeing CST-100 Starliner spacecraft to be flown on Orbital Flight Test-2 (OFT-2) is seen in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on July 12, 2021. Part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing

Editor’s note: This blog was updated Oct. 8 to reflect that the team is working toward launch opportunities in the first half of 2022 for Orbital Flight Test-2.

The NASA, Boeing team continues to make progress on the investigation of the oxidizer isolation valve issue on the Starliner service module propulsion system that was discovered ahead of the planned uncrewed Orbital Flight Test-2 (OFT-2) mission to the International Space Station in August.

“I am proud of the work our integrated teams are doing,” said Steve Stich, manager of the Commercial Crew Program at NASA’s Kennedy Space Center in Florida. “This is a complex issue involving hazardous commodities and intricate areas of the spacecraft that are not easily accessed. It has taken a methodical approach and sound engineering to effectively examine.”

Boeing has demonstrated success in valve functionality using localized heating and electrical charging techniques. Troubleshooting on the pad, at the launch complex, and inside the Starliner production factory at Kennedy Space Center has resulted in movement of all but one of the original stuck valves. That valve has not been moved intentionally to preserve forensics for direct root cause analysis.

Most items on the fault tree have been dispositioned by the team including causes related to avionics, flight software and wiring. Boeing has identified a most probable cause related to oxidizer and moisture interactions, and although some verification work remains underway, our confidence is high enough that we are commencing corrective and preventive actions. Additional spacecraft and component testing will be conducted in the coming weeks to further explore contributing factors and necessary system remediation before flight.

Boeing completed a partial disassembly of three of the affected Orbital Maneuvering and Attitude Control (OMAC) thruster valves last month and plans to remove three valves from the OFT-2 spacecraft in the coming weeks for further inspection. The team also is evaluating additional testing to repeat the initial valve failures.

Boeing has identified several paths forward depending on the outcome of the testing to ultimately resolve the issue and prevent it from happening on future flights. These options could range from minor refurbishment of the current service module components to using another service module already in production. Each option is dependent on data points the team expects to collect in the coming weeks including a timeline for safely proceeding back to the launch pad.

“Safety of the Starliner spacecraft, our employees, and our crew members is this team’s number one priority,” said John Vollmer, vice president and program manager, Boeing’s Starliner program. “We are taking the appropriate amount of time to work through the process now to set this system up for success on OFT-2 and all future Starliner missions.”

Potential launch windows for OFT-2 continue to be assessed by NASA, Boeing, United Launch Alliance, and the Eastern Range. The team currently is working toward opportunities in the first half of 2022 pending hardware readiness, the rocket manifest, and space station availability.

Houston, We Have a Pepper

Four chile pepper plants growing aboard the International Space Station in the Advanced Plant Habitat (APH) bore fruit. Photo credit: NASA

Recently, the four chile pepper plants growing aboard the International Space Station in the Advanced Plant Habitat (APH) bore fruit – several peppers, in fact.

Peppers developed from flowers that bloomed in the Advanced Plant Habitat on the International Space Station. Photo credit: NASA

The peppers developed from flowers that bloomed over the past few weeks. Peppers are self-pollinating, and once pollination occurred, peppers started forming 24 to 48 hours later; however, not all pollinated flowers developed into peppers.

A unique feature of the APH is that it can be controlled remotely. To pollinate the flowers in orbit, the team at NASA’s Kennedy Space Center instructed APH to run its fans at variable rates to create a gentle breeze in microgravity to agitate the flowers and encourage the transfer of pollen. The space station crew also provided assistance by hand pollinating some of the flowers.

GMT273_12_13_For Huntsville_Megan McArthur_1091_Plant Habitat 04

Studies of fruit development in microgravity are limited, and NASA researchers have noted lower fruit development versus ground observations in this experiment for reasons that are not fully understood at this point. Overcoming the challenges of growing fruit in microgravity is important for long-duration missions during which crew members will need good sources of Vitamin C – such as peppers – to supplement their diets.

The average length for this type of pepper is just over three inches in ground tests. Hatch chile peppers are a mild heat pepper that starts out as green and will ripen to red over time, but it’s unknown what effect microgravity will have on the length to which they grow and their potency.

Astronauts will perform two harvests this year – one at 100 days in late October, and one at 120 days in early November. At those times, astronauts will sanitize the peppers, eat part of their harvests, and return the rest to Earth for analysis.

Cargo Dragon Splashes Down in the Atlantic, Science Delivered to Kennedy

SpaceX Cargo Dragon spacecraft
SpaceX’s Cargo Dragon spacecraft is lifted aboard a recovery vessel after splashing down off the coast of Florida on Thursday, Sept. 30, 2021. The capsule, carrying cargo that flew aboard NASA’s SpaceX 23rd commercial resupply services mission, undocked from the International Space Station Thursday at approximately 9 a.m. The event marked the first time a Cargo Dragon splashed down in the Atlantic Ocean. Photo credit: SpaceX

SpaceX’s Cargo Dragon spacecraft completed a successful parachute-assisted splashdown off the coast of Florida around 11 p.m. EDT on Thursday, Sept. 30. The capsule undocked from the station’s forward port of the Harmony module Thursday at 9:12 a.m., completing the voyage in approximately 14 hours.

This marked the first time Cargo Dragon splashed down in the Atlantic Ocean. The proximity to the coast of Florida enabled quick transportation of the science aboard the capsule to NASA Kennedy Space Center’s Space Station Processing Facility, delivering some science back into the hands of the researchers hours after splashdown. The shorter transportation timeframe allows researchers to collect data with minimal loss of microgravity effects.

Dragon launched Aug. 29 on a SpaceX Falcon 9 rocket from Launch Complex 39A at Kennedy, arriving at the station the following day. The spacecraft delivered more than 4,800 pounds of research investigations, crew supplies, and vehicle hardware to the orbiting outpost.

Learn more about station activities by following the space station blog, on Twitter @Space_Station and @ISS_Research, as well as the ISS Facebook and ISS Instagram accounts.

NOAA’s GOES-T Launch Update

Artist's rendering of GOES-R, NASA
Credit: NASA/Artist’s rendering of GOES-R

NASA and the National Oceanic and Atmospheric Administration (NOAA) are now targeting Feb. 16, 2022, for the launch of the Geostationary Operational Environmental Satellite T (GOES-T) mission. The launch was previously planned for Jan. 8, 2022. NASA, NOAA, and United Launch Alliance (ULA) coordinated the new target date to optimize launch schedules for missions flying from Space Launch Complex-41.

GOES-T will launch from Cape Canaveral Space Force Station in Florida on a United Launch Alliance Atlas V 541 rocket. The two-hour launch window will open at 4:40 p.m. EST. This launch is managed by NASA’s Launch Services Program based at Kennedy Space Center.

GOES-T is the third satellite in the GOES-R Series, which will extend NOAA’s operational geostationary satellite observations through 2036. The GOES satellite network helps meteorologists observe and predict local weather events, including thunderstorms, tornadoes, fog, hurricanes, flash floods and other severe weather.

NOAA manages the GOES-R Series Program through an integrated NOAA-NASA office, administering the ground system contract, operating the satellites, and distributing their data to users worldwide. NASA’s Goddard Space Flight Center oversees the acquisition of the GOES-R spacecraft and instruments. Lockheed Martin designs, creates, and tests the GOES-R Series satellites. L3Harris Technologies provides the main instrument payload, the Advanced Baseline Imager, along with the ground system, which includes the antenna system for data reception.

Looking forward, NOAA is working with NASA on the next-generation geostationary satellite mission called Geostationary Extended Observations (GeoXO), which will bring new capabilities in support of U.S. weather, ocean, and climate operations in the 2030s.  NASA will manage the development of the GeoXO satellites and launch them for NOAA.

Landsat 9 Continues a Legacy of 50 Years

The United Launch Alliance Atlas V rocket with the Landsat 9 satellite onboard is seen, Sunday, Sept. 26, 2021, at Vandenberg Space Force Base in California.
The Landsat 9 satellite, a joint NASA/U.S. Geological Survey mission that continues the legacy of monitoring Earth’s land and coastal regions, lifted off from Vandenberg Space Force on Monday, Sept. 27, at 11:12 a.m. PDT (2:12 p.m. EDT). Photo Credit: NASA/Bill Ingalls

After a United Launch Alliance Atlas V rocket successfully carried the Landsat 9 spacecraft into orbit from Vandenberg Space Force Base in California on Sept. 27, the satellite now joins Landsat 8 in orbit and replaces Landsat 7, launched in 1999.

Landsat 9 and Landsat 8 will collect images from across the planet every eight days. This calibrated data will continue the Landsat program’s critical role in monitoring the health of Earth and helping people manage essential resources, including crops, irrigation water, and forests.

“Landsat provides one basic set of observations that feeds an entire range of Earth science applications and research,” said NASA Landsat 9 Project Scientist Jeff Masek.

Images from Landsat 9 will be added to nearly 50 years of free and publicly available data from the mission – the longest data record of Earth’s landscapes taken from space. Landsat’s medium-resolution imaging capability allows researchers to harmonize the images to detect the footprint of human activities and their impact on our home planet over the decades.

NASA Landsat 9 Project Scientist Jeff Masek poses for a photograph by the United Launch Alliance (ULA) Atlas V rocket with the Landsat 9 satellite at Vandenberg Space Force Base in California. Photo credit: NASA/Bill Ingalls

“We have over 2,000 peer-reviewed publications every year in the scientific literature that depend on the Landsat archive,” Masek said. “Landsat is our best source for understanding rates of tropical deforestation, as well as other forest dynamics like disturbances from hurricanes, wildfires, insect outbreaks, as well as the recovery of those disturbances over time.”

As Landsat 9 orbits Earth, it captures scenes across a swath 185 kilometers (115) miles wide. Each pixel in these images is 30 meters across, or about the size of a baseball infield, which allows resource managers to resolve most crop fields in the United States. Its instruments collect images of Earth’s landscapes in visible, near and shortwave (reflected) infrared, and thermal infrared wavelengths. Like its predecessors, Landsat 9 is a joint effort of NASA and the U.S. Geological Survey.

“The USGS collection data allow the science, government, civil, and international user communities to map wildfires, primary and secondary contributions to greenhouse gas emissions, ice cover persistence, melt, water clarity, water quality, floating algae biomass, landcover that’s changed, and also urban growth and the heat island effects on local and regional temperature,” said USGS Project Scientist Chris Crawford. “The USGS 5-year archive provides a highly reliable, highly stable, and high-quality terrestrial and aquatic imaging record that can enable the quantification of space and time effects of climate variability and change on both human and natural systems.”

The Operational Land Imager on the Landsat 8 satellite captured this image of a phytoplankton bloom in the Sea of Marmara on May 17, 2015.
The Operational Land Imager on the Landsat 8 satellite captured this image of a phytoplankton bloom in the Sea of Marmara on May 17, 2015. Photo credit: NASA Earth Observatory

Since the launch of the first Landsat satellite in 1972, the mission’s archive has grown to contain more than 8 million images. Landsat 9 data will add to this archive to better our understanding of Earth in innumerable ways – from tracking water use in crop fields in the western United States, to monitoring deforestation in the Amazon rainforest, to measuring the speed of Antarctic glaciers. Decision makers from across the globe use the freely available Landsat data to better understand environmental change, forecast global crop production, respond to natural disasters, and more. The usefulness of the data stems from the careful design and engineering of the satellite and the mission.

“Landsat allows us to track in near real time, and in a consistent way, changes to our planet and specifically to our agricultural lands,” said Inbal Becker-Reshef, program director of NASA Harvest, the agency’s food security and agriculture program. “One of the biggest stories of landcover change Landsat has been instrumental to reveal and to track has been the rapid deforestation in the Amazon in South America, in large part driven by agricultural expansion for pastures and croplands. Without Landsat’s historical data archive, we wouldn’t be able to track such massive land changes, which have critical implications for Earth’s ecosystems, biodiversity, and for climate.”

Landsat 9 is designed to last at least five years on orbit but has enough fuel to operate for at least 15 years, including de-orbit, though it could last for 20 or more years. Data from the satellite will become available to the public after completion of the satellite’s 100-day checkout period in January. The next Landsat mission is already in the works, with a series of planned enhancements, including higher spatial resolution, more spectral bands, and more frequent coverage, which are the highest priorities from the Landsat user communities.

To learn more about Landsat 9, visit https://www.nasa.gov/specials/landsat; https://landsat.gsfc.nasa.gov; and https://www.usgs.gov/landsat.

Continue following the mission on social media, and let people know you’re following it on Twitter, Facebook, and Instagram using the hashtag #Landsat and tag these accounts:

Twitter: @NASA, @NASAEarth, @NASA_Landsat, @NASASocial, @NASA_LSP, @NASA360
Facebook: NASA, NASA Earth, NASA LSP
Instagram: NASA, NASAEarth

Landsat 9 Satellite Separates From Second Stage, Traveling on Its Own

A graphic of Landsat 9 shows successful separation from the United Launch Alliance Centaur upper stage just over an hour and 20 minutes after liftoff.
An animated graphic shows successful separation of the Landsat 9 observatory from the United Launch Alliance Centaur second stage just over an hour and 20 minutes after liftoff. Photo credit: NASA TV

The Landsat 9 satellite has separated from the Centaur second stage.

Once online, Landsat 9 will take its place as the most advanced satellite in the Landsat series and extend the data record of Earth’s land surface that began with the first Landsat satellite in 1972. Landsat’s high-quality scientific data makes multi-decadal time series studies possible, and its data are regularly used for land management efforts around the world.

Landsat 9 Satellite in Coast Phase

The United Launch Alliance Centaur second stage achieved the desired near-polar, sun-synchronous orbit for Landsat 9 just over 16 minutes into flight. It is now coasting to the other side of the Earth to release the spacecraft just over an hour from now.

Landsat 9 Launches!

The United Launch Alliance Atlas V rocket launches the Landsat 9 satellite into near-polar, sun-synchronous orbit from Vandenberg Space Force Base on Sept. 27, 2021.
The United Launch Alliance Atlas V rocket launches the Landsat 9 satellite into near-polar, sun-synchronous orbit from Vandenberg Space Force Base on Sept. 27, 2021. Photo credit: NASA/Kim Shiflett

Landsat 9, powered by the United Launch Alliance Atlas V 401 rocket, has lifted off from Space Launch Complex-3 at Vandenberg Space Force Base in California today, Sept. 27! Launch occurred at 11:12 a.m. PDT (2:12 p.m. EDT).