Partnership May Lead to Advanced Communication Technology

Kennedy Space Center Director Bob Cabana, right, signed a Space Act agreement with John Pederson, Board Chairman and CEO of Light Visually Transceiving (LVX) System Corp., to facilitate a collaboration in developing a potentially ground-breaking technology in electronic communications. Photo credit: NASA/ Kim Shiflett
Kennedy Space Center Director Bob Cabana, right, signed a Space Act agreement with John Pederson, Board Chairman and CEO of Light Visually Transceiving (LVX) System Corp., to facilitate a collaboration in developing a potentially ground-breaking technology in electronic communications. Photo credit: NASA/ Kim Shiflett

NASA at the Kennedy Space Center has entered into a partnership with Light Visually Transceiving (LVX) System Corp. to collaborate in developing a potentially ground-breaking technology in electronic communications. Similar to high-speed communication known as Wi-Fi, visible light communication, or VLC, is a wireless method using light-emitting diodes referred to as Li-Fi.

On July 30, 2015, Kennedy Director Bob Cabana signed a Space Act agreement with LVX Board Chairman and CEO John Pederson to license researchers at Kennedy to study and develop new applications for visual light communication. Space Act Agreements are legal understandings empowering NASA to work with any organization that helps fulfill the agency’s mandate. This effort, coordinated by Center Planning and Development, is a continuation of Kennedy’s transition to a diverse, multi-user spaceport.

With LVX System now headquartered at Kennedy, the Space Act Agreement will facilitate their researchers and NASA experts to study and develop new applications for VLC, including use on future deep-space missions and innovations that have the potential to benefit daily life.

During the five year agreement between NASA and LVX, Kennedy will perform reimbursable services to further research and technology development of VLC and lighting system augmentation. NASA will provide a final prototype at its conclusion consisting of a camera, microphone and speaker technologies. Additionally, NASA and LVX are studying enhancements to lighting system capabilities in hopes of improving Global Positioning Satellite routing systems.

Pederson has been working with lighting specialist Eirik Holbert of Kennedy’s Flight Technology Branch and other scientists and engineers in the space center’s Swamp Works laboratory. Together, they are evolving the technology of visible light communication fixtures for ground and potential space-based applications.

Kennedy’s Swamp Works establishes rapid, innovative and cost-effective exploration mission solutions through leveraging of partnerships across NASA, industry and academia. Concepts start small and build up fast, with lean development processes and a hands-on approach.

Li-Fi can be used as standalone communication technology, as well as a supplement to radio-frequency or cellular networks. One of the primary advantages of VLC over radio-frequency bandwidth limitations is the visible light spectrum is 10,000 times larger.

A VLC network provides a wireless or “fibreless” light photon medium with virtually unlimited data transfer and significantly reduced security risks. VLC also operates with reduced energy requirements, thus making it a “green” technology.

Innovations such as VLC and Li-Fi are additional ways NASA is investing in the future. The agency continually seeks technology solutions that dramatically improve its capabilities while generating tangible benefits that create jobs, earn revenue and save lives.